Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfd Structured version   Visualization version   Unicode version

Theorem nfd 1976
 Description: Deduce that is not free in in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfd.1
nfd.2
Assertion
Ref Expression
nfd

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . . 3
2 nfd.2 . . 3
31, 2alrimi 1975 . 2
4 df-nf 1676 . 2
53, 4sylibr 217 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1450  wnf 1675 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-ex 1672  df-nf 1676 This theorem is referenced by:  nfdh  1977  nfnt  2002  axc16nf  2046  nfald  2053  dvelimhw  2079  cbv1h  2124  nfeqf  2152  axc16nfALT  2172  nfsb2  2209  distel  30521  bj-cbv1hv  31397  bj-axc16nf  31422  bj-nfsb2v  31438  wl-ax11-lem3  31981
 Copyright terms: Public domain W3C validator