![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcxfrd | Structured version Visualization version Unicode version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfceqi.1 |
![]() ![]() ![]() ![]() |
nfcxfrd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcxfrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcxfrd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfceqi.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | nfceqi 2588 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylibr 216 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-12 1932 ax-ext 2430 |
This theorem depends on definitions: df-bi 189 df-an 373 df-tru 1446 df-ex 1663 df-nf 1667 df-cleq 2443 df-clel 2446 df-nfc 2580 |
This theorem is referenced by: nfcsb1d 3376 nfcsbd 3379 nfifd 3908 nfunid 4204 nfiotad 5548 nfriotad 6258 nfovd 6313 nfnegd 9867 |
Copyright terms: Public domain | W3C validator |