MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcjust Structured version   Unicode version

Theorem nfcjust 2603
Description: Justification theorem for df-nfc 2604. (Contributed by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
nfcjust  |-  ( A. y F/ x  y  e.  A  <->  A. z F/ x  z  e.  A )
Distinct variable groups:    x, y,
z    y, A, z
Allowed substitution hint:    A( x)

Proof of Theorem nfcjust
StepHypRef Expression
1 nfv 1712 . . 3  |-  F/ x  y  =  z
2 eleq1 2526 . . 3  |-  ( y  =  z  ->  (
y  e.  A  <->  z  e.  A ) )
31, 2nfbidf 1892 . 2  |-  ( y  =  z  ->  ( F/ x  y  e.  A 
<->  F/ x  z  e.  A ) )
43cbvalv 2028 1  |-  ( A. y F/ x  y  e.  A  <->  A. z F/ x  z  e.  A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   A.wal 1396   F/wnf 1621    e. wcel 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1618  df-nf 1622  df-cleq 2446  df-clel 2449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator