MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfceqdf Structured version   Unicode version

Theorem nfceqdf 2611
Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfceqdf.1  |-  F/ x ph
nfceqdf.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
nfceqdf  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )

Proof of Theorem nfceqdf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfceqdf.1 . . . 4  |-  F/ x ph
2 nfceqdf.2 . . . . 5  |-  ( ph  ->  A  =  B )
32eleq2d 2524 . . . 4  |-  ( ph  ->  ( y  e.  A  <->  y  e.  B ) )
41, 3nfbidf 1892 . . 3  |-  ( ph  ->  ( F/ x  y  e.  A  <->  F/ x  y  e.  B )
)
54albidv 1718 . 2  |-  ( ph  ->  ( A. y F/ x  y  e.  A  <->  A. y F/ x  y  e.  B ) )
6 df-nfc 2604 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
7 df-nfc 2604 . 2  |-  ( F/_ x B  <->  A. y F/ x  y  e.  B )
85, 6, 73bitr4g 288 1  |-  ( ph  ->  ( F/_ x A  <->  F/_ x B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   A.wal 1396    = wceq 1398   F/wnf 1621    e. wcel 1823   F/_wnfc 2602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-12 1859  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-ex 1618  df-nf 1622  df-cleq 2446  df-clel 2449  df-nfc 2604
This theorem is referenced by:  nfceqi  2612  nfopd  4220  dfnfc2  4253  nfimad  5334  nffvd  5857  riotasv2d  35085
  Copyright terms: Public domain W3C validator