Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbidf Structured version   Unicode version

Theorem nfbidf 1911
 Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1
nfbidf.2
Assertion
Ref Expression
nfbidf

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . 3
2 nfbidf.2 . . . 4
31, 2albid 1909 . . . 4
42, 3imbi12d 318 . . 3
51, 4albid 1909 . 2
6 df-nf 1638 . 2
7 df-nf 1638 . 2
85, 6, 73bitr4g 288 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184  wal 1403  wnf 1637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-12 1878 This theorem depends on definitions:  df-bi 185  df-ex 1634  df-nf 1638 This theorem is referenced by:  drnf2  2098  dvelimdf  2103  nfcjust  2551  nfceqdf  2559  bj-drnf2v  30893  bj-nfcjust  30990  wl-nfimf1  31345  nfbii2  31849
 Copyright terms: Public domain W3C validator