MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Unicode version

Theorem nfaba1 2618
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1  |-  F/_ x { y  |  A. x ph }

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1833 . 2  |-  F/ x A. x ph
21nfab 2617 1  |-  F/_ x { y  |  A. x ph }
Colors of variables: wff setvar class
Syntax hints:   A.wal 1368   {cab 2436   F/_wnfc 2599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-nfc 2601
This theorem is referenced by:  nfopd  4176  nfimad  5278  nfiota1  5483  nffvd  5800
  Copyright terms: Public domain W3C validator