MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa1-o Structured version   Unicode version

Theorem nfa1-o 2225
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o  |-  F/ x A. x ph

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 2208 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1597 1  |-  F/ x A. x ph
Colors of variables: wff setvar class
Syntax hints:   A.wal 1368   F/wnf 1590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-c5 2194  ax-c4 2195  ax-c7 2196
This theorem depends on definitions:  df-bi 185  df-nf 1591
This theorem is referenced by:  axc11n-16  2248  ax12eq  2251  ax12el  2252  ax12v2-o  2259
  Copyright terms: Public domain W3C validator