Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1-o Structured version   Visualization version   Unicode version

Theorem nfa1-o 32550
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o  |-  F/ x A. x ph

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 32533 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1682 1  |-  F/ x A. x ph
Colors of variables: wff setvar class
Syntax hints:   A.wal 1450   F/wnf 1675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-c5 32519  ax-c4 32520  ax-c7 32521
This theorem depends on definitions:  df-bi 190  df-nf 1676
This theorem is referenced by:  axc11n-16  32573  ax12eq  32576  ax12el  32577  ax12v2-o  32584
  Copyright terms: Public domain W3C validator