MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf3or Structured version   Visualization version   Unicode version

Theorem nf3or 2029
Description: If  x is not free in  ph,  ps, and  ch, it is not free in  ( ph  \/  ps  \/  ch ). (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nf.1  |-  F/ x ph
nf.2  |-  F/ x ps
nf.3  |-  F/ x ch
Assertion
Ref Expression
nf3or  |-  F/ x
( ph  \/  ps  \/  ch )

Proof of Theorem nf3or
StepHypRef Expression
1 df-3or 992 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 nf.1 . . . 4  |-  F/ x ph
3 nf.2 . . . 4  |-  F/ x ps
42, 3nfor 2028 . . 3  |-  F/ x
( ph  \/  ps )
5 nf.3 . . 3  |-  F/ x ch
64, 5nfor 2028 . 2  |-  F/ x
( ( ph  \/  ps )  \/  ch )
71, 6nfxfr 1706 1  |-  F/ x
( ph  \/  ps  \/  ch )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 374    \/ w3o 990   F/wnf 1677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-10 1925  ax-12 1943
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-ex 1674  df-nf 1678
This theorem is referenced by:  nfso  4779
  Copyright terms: Public domain W3C validator