MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nexr Structured version   Unicode version

Theorem nexr 1927
Description: Inference form of 19.8a 1912. (Contributed by Jeff Hankins, 26-Jul-2009.)
Hypothesis
Ref Expression
nexr.1  |-  -.  E. x ph
Assertion
Ref Expression
nexr  |-  -.  ph

Proof of Theorem nexr
StepHypRef Expression
1 nexr.1 . 2  |-  -.  E. x ph
2 19.8a 1912 . 2  |-  ( ph  ->  E. x ph )
31, 2mto 179 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   E.wex 1657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-12 1909
This theorem depends on definitions:  df-bi 188  df-ex 1658
This theorem is referenced by:  alimp-surprise  40141
  Copyright terms: Public domain W3C validator