MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neneqadOLD Structured version   Unicode version

Theorem neneqadOLD 2740
Description: Obsolete proof of neqned 2634 (formerly "neneqad") as of 22-Nov-2019. (Contributed by David Moews, 28-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
neneqadOLD.1  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
neneqadOLD  |-  ( ph  ->  A  =/=  B )

Proof of Theorem neneqadOLD
StepHypRef Expression
1 neneqadOLD.1 . . 3  |-  ( ph  ->  -.  A  =  B )
21con2i 123 . 2  |-  ( A  =  B  ->  -.  ph )
32necon2ai 2666 1  |-  ( ph  ->  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1437    =/= wne 2625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-ne 2627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator