MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neir Structured version   Unicode version

Theorem neir 2660
Description: Inference associated with df-ne 2657. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neir.1  |-  -.  A  =  B
Assertion
Ref Expression
neir  |-  A  =/= 
B

Proof of Theorem neir
StepHypRef Expression
1 neir.1 . 2  |-  -.  A  =  B
2 df-ne 2657 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2mpbir 209 1  |-  A  =/= 
B
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1374    =/= wne 2655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2657
This theorem is referenced by:  nesymir  2735  nsuceq0  4951  ax1ne0  9526  ine0  9981  nnunb  10780  bj-pinftynminfty  33577
  Copyright terms: Public domain W3C validator