MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiptoptop Structured version   Visualization version   Unicode version

Theorem neiptoptop 20224
Description: Lemma for neiptopreu 20226. (Contributed by Thierry Arnoux, 7-Jan-2018.)
Hypotheses
Ref Expression
neiptop.o  |-  J  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
neiptop.0  |-  ( ph  ->  N : X --> ~P ~P X )
neiptop.1  |-  ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p ) )  -> 
b  e.  ( N `
 p ) )
neiptop.2  |-  ( (
ph  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
neiptop.3  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
neiptop.4  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. q  e.  b  a  e.  ( N `  q ) )
neiptop.5  |-  ( (
ph  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
Assertion
Ref Expression
neiptoptop  |-  ( ph  ->  J  e.  Top )
Distinct variable groups:    p, a    N, a    X, a, b, p    J, a, p    X, p    ph, p    N, b    X, b    ph, a, b
Allowed substitution hints:    ph( q)    J( q, b)    N( q, p)    X( q)

Proof of Theorem neiptoptop
Dummy variables  c 
e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4211 . . . . . . 7  |-  ( e 
C_  J  ->  U. e  C_ 
U. J )
21adantl 473 . . . . . 6  |-  ( (
ph  /\  e  C_  J )  ->  U. e  C_ 
U. J )
3 neiptop.o . . . . . . . 8  |-  J  =  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }
4 neiptop.0 . . . . . . . 8  |-  ( ph  ->  N : X --> ~P ~P X )
5 neiptop.1 . . . . . . . 8  |-  ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p ) )  -> 
b  e.  ( N `
 p ) )
6 neiptop.2 . . . . . . . 8  |-  ( (
ph  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
7 neiptop.3 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
8 neiptop.4 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. q  e.  b  a  e.  ( N `  q ) )
9 neiptop.5 . . . . . . . 8  |-  ( (
ph  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
103, 4, 5, 6, 7, 8, 9neiptopuni 20223 . . . . . . 7  |-  ( ph  ->  X  =  U. J
)
1110adantr 472 . . . . . 6  |-  ( (
ph  /\  e  C_  J )  ->  X  =  U. J )
122, 11sseqtr4d 3455 . . . . 5  |-  ( (
ph  /\  e  C_  J )  ->  U. e  C_  X )
13 simp-4l 784 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  ph )
1412ad3antrrr 744 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  U. e  C_  X )
15 simpllr 777 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  p  e.  U. e )
1614, 15sseldd 3419 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  p  e.  X )
1713, 16jca 541 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  ( ph  /\  p  e.  X
) )
18 elssuni 4219 . . . . . . . . . 10  |-  ( c  e.  e  ->  c  C_ 
U. e )
1918ad2antlr 741 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  c  C_ 
U. e )
2017, 19, 143jca 1210 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  (
( ph  /\  p  e.  X )  /\  c  C_ 
U. e  /\  U. e  C_  X ) )
21 simpr 468 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  C_  J )  ->  e  C_  J )
2221sselda 3418 . . . . . . . . . . 11  |-  ( ( ( ph  /\  e  C_  J )  /\  c  e.  e )  ->  c  e.  J )
233neipeltop 20222 . . . . . . . . . . . 12  |-  ( c  e.  J  <->  ( c  C_  X  /\  A. p  e.  c  c  e.  ( N `  p ) ) )
2423simprbi 471 . . . . . . . . . . 11  |-  ( c  e.  J  ->  A. p  e.  c  c  e.  ( N `  p ) )
2522, 24syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  e  C_  J )  /\  c  e.  e )  ->  A. p  e.  c  c  e.  ( N `  p ) )
2625r19.21bi 2776 . . . . . . . . 9  |-  ( ( ( ( ph  /\  e  C_  J )  /\  c  e.  e )  /\  p  e.  c
)  ->  c  e.  ( N `  p ) )
2726adantllr 733 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  c  e.  ( N `  p
) )
28 sseq1 3439 . . . . . . . . . . . . . 14  |-  ( a  =  c  ->  (
a  C_  U. e  <->  c 
C_  U. e ) )
29283anbi2d 1370 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
)  <->  ( ( ph  /\  p  e.  X )  /\  c  C_  U. e  /\  U. e  C_  X
) ) )
30 eleq1 2537 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  (
a  e.  ( N `
 p )  <->  c  e.  ( N `  p ) ) )
3129, 30anbi12d 725 . . . . . . . . . . . 12  |-  ( a  =  c  ->  (
( ( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
)  /\  a  e.  ( N `  p ) )  <->  ( ( (
ph  /\  p  e.  X )  /\  c  C_ 
U. e  /\  U. e  C_  X )  /\  c  e.  ( N `  p ) ) ) )
3231imbi1d 324 . . . . . . . . . . 11  |-  ( a  =  c  ->  (
( ( ( (
ph  /\  p  e.  X )  /\  a  C_ 
U. e  /\  U. e  C_  X )  /\  a  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p )
)  <->  ( ( ( ( ph  /\  p  e.  X )  /\  c  C_ 
U. e  /\  U. e  C_  X )  /\  c  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p )
) ) )
3332imbi2d 323 . . . . . . . . . 10  |-  ( a  =  c  ->  (
( ( ph  /\  e  C_  J )  -> 
( ( ( (
ph  /\  p  e.  X )  /\  a  C_ 
U. e  /\  U. e  C_  X )  /\  a  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p )
) )  <->  ( ( ph  /\  e  C_  J
)  ->  ( (
( ( ph  /\  p  e.  X )  /\  c  C_  U. e  /\  U. e  C_  X
)  /\  c  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) ) ) )
34 ssid 3437 . . . . . . . . . . . . . . . . 17  |-  X  C_  X
3534a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  C_  X )
369ralrimiva 2809 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. p  e.  X  X  e.  ( N `  p ) )
373neipeltop 20222 . . . . . . . . . . . . . . . 16  |-  ( X  e.  J  <->  ( X  C_  X  /\  A. p  e.  X  X  e.  ( N `  p ) ) )
3835, 36, 37sylanbrc 677 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  J )
39 pwexg 4585 . . . . . . . . . . . . . . 15  |-  ( X  e.  J  ->  ~P X  e.  _V )
40 rabexg 4549 . . . . . . . . . . . . . . 15  |-  ( ~P X  e.  _V  ->  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `
 p ) }  e.  _V )
4138, 39, 403syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  { a  e.  ~P X  |  A. p  e.  a  a  e.  ( N `  p ) }  e.  _V )
423, 41syl5eqel 2553 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  _V )
4342adantr 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  C_  J )  ->  J  e.  _V )
4443, 21ssexd 4543 . . . . . . . . . . 11  |-  ( (
ph  /\  e  C_  J )  ->  e  e.  _V )
45 uniexg 6607 . . . . . . . . . . 11  |-  ( e  e.  _V  ->  U. e  e.  _V )
46 sseq2 3440 . . . . . . . . . . . . . . 15  |-  ( b  =  U. e  -> 
( a  C_  b  <->  a 
C_  U. e ) )
47 sseq1 3439 . . . . . . . . . . . . . . 15  |-  ( b  =  U. e  -> 
( b  C_  X  <->  U. e  C_  X )
)
4846, 473anbi23d 1368 . . . . . . . . . . . . . 14  |-  ( b  =  U. e  -> 
( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  <-> 
( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
) ) )
4948anbi1d 719 . . . . . . . . . . . . 13  |-  ( b  =  U. e  -> 
( ( ( (
ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  <->  ( (
( ph  /\  p  e.  X )  /\  a  C_ 
U. e  /\  U. e  C_  X )  /\  a  e.  ( N `  p ) ) ) )
50 eleq1 2537 . . . . . . . . . . . . 13  |-  ( b  =  U. e  -> 
( b  e.  ( N `  p )  <->  U. e  e.  ( N `  p )
) )
5149, 50imbi12d 327 . . . . . . . . . . . 12  |-  ( b  =  U. e  -> 
( ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  ->  b  e.  ( N `  p
) )  <->  ( (
( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
)  /\  a  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) ) )
5251, 5vtoclg 3093 . . . . . . . . . . 11  |-  ( U. e  e.  _V  ->  ( ( ( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
)  /\  a  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) )
5344, 45, 523syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  e  C_  J )  ->  (
( ( ( ph  /\  p  e.  X )  /\  a  C_  U. e  /\  U. e  C_  X
)  /\  a  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) )
5433, 53chvarv 2120 . . . . . . . . 9  |-  ( (
ph  /\  e  C_  J )  ->  (
( ( ( ph  /\  p  e.  X )  /\  c  C_  U. e  /\  U. e  C_  X
)  /\  c  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) )
5554ad3antrrr 744 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  (
( ( ( ph  /\  p  e.  X )  /\  c  C_  U. e  /\  U. e  C_  X
)  /\  c  e.  ( N `  p ) )  ->  U. e  e.  ( N `  p
) ) )
5620, 27, 55mp2and 693 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e
)  /\  c  e.  e )  /\  p  e.  c )  ->  U. e  e.  ( N `  p
) )
57 simpr 468 . . . . . . . 8  |-  ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e )  ->  p  e.  U. e
)
58 eluni2 4194 . . . . . . . 8  |-  ( p  e.  U. e  <->  E. c  e.  e  p  e.  c )
5957, 58sylib 201 . . . . . . 7  |-  ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e )  ->  E. c  e.  e  p  e.  c )
6056, 59r19.29a 2918 . . . . . 6  |-  ( ( ( ph  /\  e  C_  J )  /\  p  e.  U. e )  ->  U. e  e.  ( N `  p )
)
6160ralrimiva 2809 . . . . 5  |-  ( (
ph  /\  e  C_  J )  ->  A. p  e.  U. e U. e  e.  ( N `  p
) )
623neipeltop 20222 . . . . 5  |-  ( U. e  e.  J  <->  ( U. e  C_  X  /\  A. p  e.  U. e U. e  e.  ( N `  p )
) )
6312, 61, 62sylanbrc 677 . . . 4  |-  ( (
ph  /\  e  C_  J )  ->  U. e  e.  J )
6463ex 441 . . 3  |-  ( ph  ->  ( e  C_  J  ->  U. e  e.  J
) )
6564alrimiv 1781 . 2  |-  ( ph  ->  A. e ( e 
C_  J  ->  U. e  e.  J ) )
66 inss1 3643 . . . . . 6  |-  ( e  i^i  f )  C_  e
673neipeltop 20222 . . . . . . . 8  |-  ( e  e.  J  <->  ( e  C_  X  /\  A. p  e.  e  e  e.  ( N `  p ) ) )
6867simplbi 467 . . . . . . 7  |-  ( e  e.  J  ->  e  C_  X )
6968ad2antlr 741 . . . . . 6  |-  ( ( ( ph  /\  e  e.  J )  /\  f  e.  J )  ->  e  C_  X )
7066, 69syl5ss 3429 . . . . 5  |-  ( ( ( ph  /\  e  e.  J )  /\  f  e.  J )  ->  (
e  i^i  f )  C_  X )
71 simplll 776 . . . . . . . 8  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  ph )
72 simpllr 777 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  e  e.  J )
7372, 68syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  e  C_  X )
74 simpr 468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  p  e.  ( e  i^i  f
) )
7566, 74sseldi 3416 . . . . . . . . 9  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  p  e.  e )
7673, 75sseldd 3419 . . . . . . . 8  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  p  e.  X )
7771, 76, 6syl2anc 673 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
7867simprbi 471 . . . . . . . . . 10  |-  ( e  e.  J  ->  A. p  e.  e  e  e.  ( N `  p ) )
7978r19.21bi 2776 . . . . . . . . 9  |-  ( ( e  e.  J  /\  p  e.  e )  ->  e  e.  ( N `
 p ) )
8072, 75, 79syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  e  e.  ( N `  p
) )
81 simplr 770 . . . . . . . . 9  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  f  e.  J )
82 inss2 3644 . . . . . . . . . 10  |-  ( e  i^i  f )  C_  f
8382, 74sseldi 3416 . . . . . . . . 9  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  p  e.  f )
843neipeltop 20222 . . . . . . . . . . 11  |-  ( f  e.  J  <->  ( f  C_  X  /\  A. p  e.  f  f  e.  ( N `  p ) ) )
8584simprbi 471 . . . . . . . . . 10  |-  ( f  e.  J  ->  A. p  e.  f  f  e.  ( N `  p ) )
8685r19.21bi 2776 . . . . . . . . 9  |-  ( ( f  e.  J  /\  p  e.  f )  ->  f  e.  ( N `
 p ) )
8781, 83, 86syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  f  e.  ( N `  p
) )
88 fvex 5889 . . . . . . . . 9  |-  ( N `
 p )  e. 
_V
89 inelfi 7950 . . . . . . . . 9  |-  ( ( ( N `  p
)  e.  _V  /\  e  e.  ( N `  p )  /\  f  e.  ( N `  p
) )  ->  (
e  i^i  f )  e.  ( fi `  ( N `  p )
) )
9088, 89mp3an1 1377 . . . . . . . 8  |-  ( ( e  e.  ( N `
 p )  /\  f  e.  ( N `  p ) )  -> 
( e  i^i  f
)  e.  ( fi
`  ( N `  p ) ) )
9180, 87, 90syl2anc 673 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  (
e  i^i  f )  e.  ( fi `  ( N `  p )
) )
9277, 91sseldd 3419 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  J )  /\  f  e.  J
)  /\  p  e.  ( e  i^i  f
) )  ->  (
e  i^i  f )  e.  ( N `  p
) )
9392ralrimiva 2809 . . . . 5  |-  ( ( ( ph  /\  e  e.  J )  /\  f  e.  J )  ->  A. p  e.  ( e  i^i  f
) ( e  i^i  f )  e.  ( N `  p ) )
943neipeltop 20222 . . . . 5  |-  ( ( e  i^i  f )  e.  J  <->  ( (
e  i^i  f )  C_  X  /\  A. p  e.  ( e  i^i  f
) ( e  i^i  f )  e.  ( N `  p ) ) )
9570, 93, 94sylanbrc 677 . . . 4  |-  ( ( ( ph  /\  e  e.  J )  /\  f  e.  J )  ->  (
e  i^i  f )  e.  J )
9695ralrimiva 2809 . . 3  |-  ( (
ph  /\  e  e.  J )  ->  A. f  e.  J  ( e  i^i  f )  e.  J
)
9796ralrimiva 2809 . 2  |-  ( ph  ->  A. e  e.  J  A. f  e.  J  ( e  i^i  f
)  e.  J )
98 istopg 20002 . . 3  |-  ( J  e.  _V  ->  ( J  e.  Top  <->  ( A. e ( e  C_  J  ->  U. e  e.  J
)  /\  A. e  e.  J  A. f  e.  J  ( e  i^i  f )  e.  J
) ) )
9942, 98syl 17 . 2  |-  ( ph  ->  ( J  e.  Top  <->  ( A. e ( e  C_  J  ->  U. e  e.  J
)  /\  A. e  e.  J  A. f  e.  J  ( e  i^i  f )  e.  J
) ) )
10065, 97, 99mpbir2and 936 1  |-  ( ph  ->  J  e.  Top )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   U.cuni 4190   -->wf 5585   ` cfv 5589   ficfi 7942   Topctop 19994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-en 7588  df-fin 7591  df-fi 7943  df-top 19998
This theorem is referenced by:  neiptopnei  20225  neiptopreu  20226
  Copyright terms: Public domain W3C validator