MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neips Structured version   Unicode version

Theorem neips 18833
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
neips  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Distinct variable groups:    J, p    N, p    S, p    X, p

Proof of Theorem neips
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4115 . . . . . 6  |-  ( p  e.  S  ->  { p }  C_  S )
2 neiss 18829 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  {
p }  C_  S
)  ->  N  e.  ( ( nei `  J
) `  { p } ) )
31, 2syl3an3 1254 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  p  e.  S )  ->  N  e.  ( ( nei `  J
) `  { p } ) )
433exp 1187 . . . 4  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  (
p  e.  S  ->  N  e.  ( ( nei `  J ) `  { p } ) ) ) )
54ralrimdv 2901 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
653ad2ant1 1009 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
7 r19.28zv 3873 . . . . 5  |-  ( S  =/=  (/)  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
873ad2ant3 1011 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
9 ssrab2 3535 . . . . . . . . . 10  |-  { v  e.  J  |  v 
C_  N }  C_  J
10 uniopn 18626 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { v  e.  J  | 
v  C_  N }  C_  J )  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
119, 10mpan2 671 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
1211ad2antrr 725 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  U. { v  e.  J  |  v 
C_  N }  e.  J )
13 sseq1 3475 . . . . . . . . . . . . . . . 16  |-  ( v  =  g  ->  (
v  C_  N  <->  g  C_  N ) )
1413elrab 3214 . . . . . . . . . . . . . . 15  |-  ( g  e.  { v  e.  J  |  v  C_  N }  <->  ( g  e.  J  /\  g  C_  N ) )
15 elunii 4194 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  g  /\  g  e.  { v  e.  J  |  v  C_  N } )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1614, 15sylan2br 476 . . . . . . . . . . . . . 14  |-  ( ( p  e.  g  /\  ( g  e.  J  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1716an12s 799 . . . . . . . . . . . . 13  |-  ( ( g  e.  J  /\  ( p  e.  g  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1817rexlimiva 2932 . . . . . . . . . . . 12  |-  ( E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1918ralimi 2811 . . . . . . . . . . 11  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
20 dfss3 3444 . . . . . . . . . . 11  |-  ( S 
C_  U. { v  e.  J  |  v  C_  N }  <->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
2119, 20sylibr 212 . . . . . . . . . 10  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  S  C_  U. { v  e.  J  |  v 
C_  N } )
2221adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  S  C_  U. {
v  e.  J  | 
v  C_  N }
)
23 unissb 4221 . . . . . . . . . 10  |-  ( U. { v  e.  J  |  v  C_  N }  C_  N  <->  A. h  e.  {
v  e.  J  | 
v  C_  N }
h  C_  N )
24 sseq1 3475 . . . . . . . . . . . 12  |-  ( v  =  h  ->  (
v  C_  N  <->  h  C_  N
) )
2524elrab 3214 . . . . . . . . . . 11  |-  ( h  e.  { v  e.  J  |  v  C_  N }  <->  ( h  e.  J  /\  h  C_  N ) )
2625simprbi 464 . . . . . . . . . 10  |-  ( h  e.  { v  e.  J  |  v  C_  N }  ->  h  C_  N )
2723, 26mprgbir 2894 . . . . . . . . 9  |-  U. {
v  e.  J  | 
v  C_  N }  C_  N
2822, 27jctir 538 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( S  C_ 
U. { v  e.  J  |  v  C_  N }  /\  U. {
v  e.  J  | 
v  C_  N }  C_  N ) )
29 sseq2 3476 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( S  C_  h  <->  S  C_  U. {
v  e.  J  | 
v  C_  N }
) )
30 sseq1 3475 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( h  C_  N  <->  U. { v  e.  J  |  v 
C_  N }  C_  N ) )
3129, 30anbi12d 710 . . . . . . . . 9  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( ( S  C_  h  /\  h  C_  N )  <-> 
( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) ) )
3231rspcev 3169 . . . . . . . 8  |-  ( ( U. { v  e.  J  |  v  C_  N }  e.  J  /\  ( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3312, 28, 32syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3433ex 434 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) )
3534anim2d 565 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  -> 
( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
36353adant3 1008 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
378, 36sylbid 215 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N
) ) ) )
38 ssel2 3449 . . . . . . 7  |-  ( ( S  C_  X  /\  p  e.  S )  ->  p  e.  X )
39 neips.1 . . . . . . . 8  |-  X  = 
U. J
4039isneip 18825 . . . . . . 7  |-  ( ( J  e.  Top  /\  p  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4138, 40sylan2 474 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  p  e.  S )
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4241anassrs 648 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  p  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4342ralbidva 2837 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
44433adant3 1008 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4539isnei 18823 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
46453adant3 1008 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
4737, 44, 463imtr4d 268 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  ->  N  e.  ( ( nei `  J
) `  S )
) )
486, 47impbid 191 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   {crab 2799    C_ wss 3426   (/)c0 3735   {csn 3975   U.cuni 4189   ` cfv 5516   Topctop 18614   neicnei 18817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-top 18619  df-nei 18818
This theorem is referenced by:  utop2nei  19941
  Copyright terms: Public domain W3C validator