MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neindisj2 Structured version   Visualization version   Unicode version

Theorem neindisj2 20216
Description: A point  P belongs to the closure of a set  S iff every neighborhood of  P meets  S. (Contributed by FL, 15-Sep-2013.)
Hypothesis
Ref Expression
tpnei.1  |-  X  = 
U. J
Assertion
Ref Expression
neindisj2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) ) )
Distinct variable groups:    n, J    P, n    S, n    n, X

Proof of Theorem neindisj2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . 3  |-  X  = 
U. J
21elcls 20166 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
31isneip 20198 . . . . . . . 8  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( n  e.  ( ( nei `  J
) `  { P } )  <->  ( n  C_  X  /\  E. x  e.  J  ( P  e.  x  /\  x  C_  n ) ) ) )
4 r19.29r 2913 . . . . . . . . . . 11  |-  ( ( E. x  e.  J  ( P  e.  x  /\  x  C_  n )  /\  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  ->  E. x  e.  J  ( ( P  e.  x  /\  x  C_  n )  /\  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
5 pm3.35 597 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  x  /\  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) )  ->  ( x  i^i 
S )  =/=  (/) )
6 ssrin 3648 . . . . . . . . . . . . . . . . . 18  |-  ( x 
C_  n  ->  (
x  i^i  S )  C_  ( n  i^i  S
) )
7 sseq2 3440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  i^i  S )  =  (/)  ->  ( ( x  i^i  S ) 
C_  ( n  i^i 
S )  <->  ( x  i^i  S )  C_  (/) ) )
8 ss0 3768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  i^i  S ) 
C_  (/)  ->  ( x  i^i  S )  =  (/) )
97, 8syl6bi 236 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  i^i  S )  =  (/)  ->  ( ( x  i^i  S ) 
C_  ( n  i^i 
S )  ->  (
x  i^i  S )  =  (/) ) )
106, 9syl5com 30 . . . . . . . . . . . . . . . . 17  |-  ( x 
C_  n  ->  (
( n  i^i  S
)  =  (/)  ->  (
x  i^i  S )  =  (/) ) )
1110necon3d 2664 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  n  ->  (
( x  i^i  S
)  =/=  (/)  ->  (
n  i^i  S )  =/=  (/) ) )
125, 11syl5com 30 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  x  /\  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) )  ->  ( x  C_  n  ->  ( n  i^i 
S )  =/=  (/) ) )
1312ex 441 . . . . . . . . . . . . . 14  |-  ( P  e.  x  ->  (
( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  -> 
( x  C_  n  ->  ( n  i^i  S
)  =/=  (/) ) ) )
1413com23 80 . . . . . . . . . . . . 13  |-  ( P  e.  x  ->  (
x  C_  n  ->  ( ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  -> 
( n  i^i  S
)  =/=  (/) ) ) )
1514imp31 439 . . . . . . . . . . . 12  |-  ( ( ( P  e.  x  /\  x  C_  n )  /\  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  ->  ( n  i^i 
S )  =/=  (/) )
1615rexlimivw 2869 . . . . . . . . . . 11  |-  ( E. x  e.  J  ( ( P  e.  x  /\  x  C_  n )  /\  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  ->  ( n  i^i 
S )  =/=  (/) )
174, 16syl 17 . . . . . . . . . 10  |-  ( ( E. x  e.  J  ( P  e.  x  /\  x  C_  n )  /\  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )  ->  ( n  i^i 
S )  =/=  (/) )
1817ex 441 . . . . . . . . 9  |-  ( E. x  e.  J  ( P  e.  x  /\  x  C_  n )  -> 
( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  -> 
( n  i^i  S
)  =/=  (/) ) )
1918adantl 473 . . . . . . . 8  |-  ( ( n  C_  X  /\  E. x  e.  J  ( P  e.  x  /\  x  C_  n ) )  ->  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  ( n  i^i  S )  =/=  (/) ) )
203, 19syl6bi 236 . . . . . . 7  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( n  e.  ( ( nei `  J
) `  { P } )  ->  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  -> 
( n  i^i  S
)  =/=  (/) ) ) )
21203adant2 1049 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { P }
)  ->  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) )  ->  (
n  i^i  S )  =/=  (/) ) ) )
2221com23 80 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  -> 
( n  e.  ( ( nei `  J
) `  { P } )  ->  (
n  i^i  S )  =/=  (/) ) ) )
2322imp 436 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) )  ->  ( n  e.  ( ( nei `  J
) `  { P } )  ->  (
n  i^i  S )  =/=  (/) ) )
2423ralrimiv 2808 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) ) )  ->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) )
25 opnneip 20212 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { P }
) )
26 ineq1 3618 . . . . . . . . . . . . . . 15  |-  ( n  =  x  ->  (
n  i^i  S )  =  ( x  i^i 
S ) )
2726neeq1d 2702 . . . . . . . . . . . . . 14  |-  ( n  =  x  ->  (
( n  i^i  S
)  =/=  (/)  <->  ( x  i^i  S )  =/=  (/) ) )
2827rspccva 3135 . . . . . . . . . . . . 13  |-  ( ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  /\  x  e.  ( ( nei `  J
) `  { P } ) )  -> 
( x  i^i  S
)  =/=  (/) )
29 idd 24 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  X  /\  ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  /\  S  C_  X )  ->  ( ( x  i^i  S )  =/=  (/)  ->  ( x  i^i 
S )  =/=  (/) ) )
30293exp 1230 . . . . . . . . . . . . . 14  |-  ( P  e.  X  ->  (
( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  ( S  C_  X  ->  ( ( x  i^i 
S )  =/=  (/)  ->  (
x  i^i  S )  =/=  (/) ) ) ) )
3130com14 90 . . . . . . . . . . . . 13  |-  ( ( x  i^i  S )  =/=  (/)  ->  ( ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S )  =/=  (/) ) ) ) )
3228, 31syl 17 . . . . . . . . . . . 12  |-  ( ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  /\  x  e.  ( ( nei `  J
) `  { P } ) )  -> 
( ( J  e. 
Top  /\  x  e.  J  /\  P  e.  x
)  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S )  =/=  (/) ) ) ) )
3332ex 441 . . . . . . . . . . 11  |-  ( A. n  e.  ( ( nei `  J ) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( x  e.  ( ( nei `  J
) `  { P } )  ->  (
( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S
)  =/=  (/) ) ) ) ) )
3433com3l 83 . . . . . . . . . 10  |-  ( x  e.  ( ( nei `  J ) `  { P } )  ->  (
( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S )  =/=  (/) ) ) ) ) )
3525, 34mpcom 36 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S )  =/=  (/) ) ) ) )
36353expia 1233 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( P  e.  x  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( x  i^i  S )  =/=  (/) ) ) ) ) )
3736com25 93 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( P  e.  X  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( S  C_  X  ->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) ) ) )
3837ex 441 . . . . . 6  |-  ( J  e.  Top  ->  (
x  e.  J  -> 
( P  e.  X  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( S  C_  X  ->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) ) ) ) )
3938com25 93 . . . . 5  |-  ( J  e.  Top  ->  ( S  C_  X  ->  ( P  e.  X  ->  ( A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/)  ->  ( x  e.  J  ->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) ) ) ) )
40393imp1 1246 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) )  ->  ( x  e.  J  ->  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) ) )
4140ralrimiv 2808 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  /\  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) )  ->  A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S )  =/=  (/) ) )
4224, 41impbida 850 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( A. x  e.  J  ( P  e.  x  ->  ( x  i^i  S
)  =/=  (/) )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) ) )
432, 42bitrd 261 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  P  e.  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  A. n  e.  ( ( nei `  J
) `  { P } ) ( n  i^i  S )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   (/)c0 3722   {csn 3959   U.cuni 4190   ` cfv 5589   Topctop 19994   clsccl 20110   neicnei 20190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-top 19998  df-cld 20111  df-ntr 20112  df-cls 20113  df-nei 20191
This theorem is referenced by:  islp2  20238  trnei  20985  flimclsi  21071
  Copyright terms: Public domain W3C validator