MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiint Structured version   Unicode version

Theorem neiint 18843
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
neiint  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )

Proof of Theorem neiint
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5  |-  X  = 
U. J
21isnei 18842 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
323adant3 1008 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) ) )
433anibar 1156 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
5 simprrl 763 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  v )
61ssntr 18797 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
763adantl2 1145 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  v  C_  N ) )  ->  v  C_  ( ( int `  J
) `  N )
)
87adantrrl 723 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  v  C_  ( ( int `  J
) `  N )
)
95, 8sstrd 3477 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  ( v  e.  J  /\  ( S  C_  v  /\  v  C_  N ) ) )  ->  S  C_  ( ( int `  J
) `  N )
)
109rexlimdvaa 2948 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  ->  S  C_  ( ( int `  J ) `  N
) ) )
11 simpl1 991 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  J  e.  Top )
12 simpl3 993 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  N  C_  X )
131ntropn 18788 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  e.  J )
1411, 12, 13syl2anc 661 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  e.  J )
15 simpr 461 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  S  C_  ( ( int `  J
) `  N )
)
161ntrss2 18796 . . . . . 6  |-  ( ( J  e.  Top  /\  N  C_  X )  -> 
( ( int `  J
) `  N )  C_  N )
1711, 12, 16syl2anc 661 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  (
( int `  J
) `  N )  C_  N )
18 sseq2 3489 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( S  C_  v  <->  S  C_  ( ( int `  J ) `
 N ) ) )
19 sseq1 3488 . . . . . . 7  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( v  C_  N  <->  ( ( int `  J ) `  N
)  C_  N )
)
2018, 19anbi12d 710 . . . . . 6  |-  ( v  =  ( ( int `  J ) `  N
)  ->  ( ( S  C_  v  /\  v  C_  N )  <->  ( S  C_  ( ( int `  J
) `  N )  /\  ( ( int `  J
) `  N )  C_  N ) ) )
2120rspcev 3179 . . . . 5  |-  ( ( ( ( int `  J
) `  N )  e.  J  /\  ( S  C_  ( ( int `  J ) `  N
)  /\  ( ( int `  J ) `  N )  C_  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2214, 15, 17, 21syl12anc 1217 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  /\  S  C_  ( ( int `  J ) `  N
) )  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) )
2322ex 434 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( S  C_  ( ( int `  J ) `  N
)  ->  E. v  e.  J  ( S  C_  v  /\  v  C_  N ) ) )
2410, 23impbid 191 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( E. v  e.  J  ( S  C_  v  /\  v  C_  N )  <->  S  C_  (
( int `  J
) `  N )
) )
254, 24bitrd 253 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  N  C_  X )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  S  C_  (
( int `  J
) `  N )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   E.wrex 2800    C_ wss 3439   U.cuni 4202   ` cfv 5529   Topctop 18633   intcnt 18756   neicnei 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-top 18638  df-ntr 18759  df-nei 18837
This theorem is referenced by:  opnnei  18859  topssnei  18863  iscnp4  19002  llycmpkgen2  19258  flimopn  19683  fclsneii  19725  fcfnei  19743  limcflf  21492  neiin  28695
  Copyright terms: Public domain W3C validator