MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Structured version   Unicode version

Theorem neii2 19736
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Distinct variable groups:    g, J    g, N    S, g

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2457 . . 3  |-  U. J  =  U. J
21neiss2 19729 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
31isnei 19731 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
4 simpr 461 . . . 4  |-  ( ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
53, 4syl6bi 228 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
65impancom 440 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  C_  U. J  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
72, 6mpd 15 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1819   E.wrex 2808    C_ wss 3471   U.cuni 4251   ` cfv 5594   Topctop 19521   neicnei 19725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-top 19526  df-nei 19726
This theorem is referenced by:  neiss  19737  ssnei  19738  ssnei2  19744  innei  19753  opnneiid  19754  neissex  19755  cnpnei  19892  hausnei2  19981  nlly2i  20103  neitx  20234  cnextcn  20693  utopreg  20881  neibastop2  30384
  Copyright terms: Public domain W3C validator