MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Structured version   Unicode version

Theorem neii2 19370
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Distinct variable groups:    g, J    g, N    S, g

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2462 . . 3  |-  U. J  =  U. J
21neiss2 19363 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
31isnei 19365 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
4 simpr 461 . . . 4  |-  ( ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
53, 4syl6bi 228 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
65impancom 440 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  C_  U. J  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
72, 6mpd 15 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762   E.wrex 2810    C_ wss 3471   U.cuni 4240   ` cfv 5581   Topctop 19156   neicnei 19359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-top 19161  df-nei 19360
This theorem is referenced by:  neiss  19371  ssnei  19372  ssnei2  19378  innei  19387  opnneiid  19388  neissex  19389  cnpnei  19526  hausnei2  19615  nlly2i  19738  neitx  19838  cnextcn  20297  utopreg  20485  neibastop2  29771
  Copyright terms: Public domain W3C validator