MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifil Structured version   Unicode version

Theorem neifil 20116
Description: The neighborhoods of a nonempty set is a filter. Example 2 of [BourbakiTop1] p. I.36. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
neifil  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )

Proof of Theorem neifil
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toponuni 19195 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
21adantr 465 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. J )
3 topontop 19194 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43adantr 465 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  J  e.  Top )
5 simpr 461 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_  X )
65, 2sseqtrd 3540 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  S  C_ 
U. J )
7 eqid 2467 . . . . . . . . 9  |-  U. J  =  U. J
87neiuni 19389 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  =  U. ( ( nei `  J
) `  S )
)
94, 6, 8syl2anc 661 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  =  U. ( ( nei `  J ) `  S
) )
102, 9eqtrd 2508 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  =  U. ( ( nei `  J ) `  S
) )
11 eqimss2 3557 . . . . . 6  |-  ( X  =  U. ( ( nei `  J ) `
 S )  ->  U. ( ( nei `  J
) `  S )  C_  X )
1210, 11syl 16 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. (
( nei `  J
) `  S )  C_  X )
13 sspwuni 4411 . . . . 5  |-  ( ( ( nei `  J
) `  S )  C_ 
~P X  <->  U. (
( nei `  J
) `  S )  C_  X )
1412, 13sylibr 212 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  (
( nei `  J
) `  S )  C_ 
~P X )
15143adant3 1016 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  C_  ~P X )
16 0nnei 19379 . . . . 5  |-  ( ( J  e.  Top  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
173, 16sylan 471 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  =/=  (/) )  ->  -.  (/) 
e.  ( ( nei `  J ) `  S
) )
18173adant2 1015 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  -.  (/)  e.  ( ( nei `  J
) `  S )
)
197tpnei 19388 . . . . . . 7  |-  ( J  e.  Top  ->  ( S  C_  U. J  <->  U. J  e.  ( ( nei `  J
) `  S )
) )
2019biimpa 484 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
214, 6, 20syl2anc 661 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  U. J  e.  ( ( nei `  J
) `  S )
)
222, 21eqeltrd 2555 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  X  e.  ( ( nei `  J
) `  S )
)
23223adant3 1016 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  X  e.  ( ( nei `  J
) `  S )
)
2415, 18, 233jca 1176 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
) )
25 elpwi 4019 . . . . 5  |-  ( x  e.  ~P X  ->  x  C_  X )
264ad2antrr 725 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  J  e.  Top )
27 simprl 755 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  e.  ( ( nei `  J
) `  S )
)
28 simprr 756 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  y  C_  x )
29 simplr 754 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  X
)
302ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  X  =  U. J )
3129, 30sseqtrd 3540 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  C_  U. J
)
327ssnei2 19383 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  e.  ( ( nei `  J ) `
 S ) )  /\  ( y  C_  x  /\  x  C_  U. J
) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3326, 27, 28, 31, 32syl22anc 1229 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X
)  /\  ( y  e.  ( ( nei `  J
) `  S )  /\  y  C_  x ) )  ->  x  e.  ( ( nei `  J
) `  S )
)
3433rexlimdvaa 2956 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  C_  X )  ->  ( E. y  e.  (
( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3525, 34sylan2 474 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  /\  x  e.  ~P X )  -> 
( E. y  e.  ( ( nei `  J
) `  S )
y  C_  x  ->  x  e.  ( ( nei `  J ) `  S
) ) )
3635ralrimiva 2878 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
37363adant3 1016 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
) )
38 innei 19392 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S )  /\  y  e.  ( ( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
)
39383expib 1199 . . . . 5  |-  ( J  e.  Top  ->  (
( x  e.  ( ( nei `  J
) `  S )  /\  y  e.  (
( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
) )
403, 39syl 16 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( (
x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
41403ad2ant1 1017 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( x  e.  ( ( nei `  J ) `
 S )  /\  y  e.  ( ( nei `  J ) `  S ) )  -> 
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4241ralrimivv 2884 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) )
43 isfil2 20092 . 2  |-  ( ( ( nei `  J
) `  S )  e.  ( Fil `  X
)  <->  ( ( ( ( nei `  J
) `  S )  C_ 
~P X  /\  -.  (/) 
e.  ( ( nei `  J ) `  S
)  /\  X  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ~P  X ( E. y  e.  ( ( nei `  J ) `
 S ) y 
C_  x  ->  x  e.  ( ( nei `  J
) `  S )
)  /\  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) ) )
4424, 37, 42, 43syl3anbrc 1180 1  |-  ( ( J  e.  (TopOn `  X )  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( ( nei `  J ) `
 S )  e.  ( Fil `  X
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   ` cfv 5586   Topctop 19161  TopOnctopon 19162   neicnei 19364   Filcfil 20081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-fbas 18187  df-top 19166  df-topon 19169  df-nei 19365  df-fil 20082
This theorem is referenced by:  trnei  20128  neiflim  20210  hausflim  20217  flimcf  20218  flimclslem  20220  cnpflf2  20236  cnpflf  20237  fclsfnflim  20263  neipcfilu  20534
  Copyright terms: Public domain W3C validator