Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Unicode version

Theorem neifg 30373
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 20469. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1  |-  X  = 
U. J
Assertion
Ref Expression
neifg  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  ( ( nei `  J
) `  S )
)
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem neifg
Dummy variables  u  t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4  |-  X  = 
U. J
21opnfbas 20469 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  e.  (
fBas `  X )
)
3 fgval 20497 . . 3  |-  ( { x  e.  J  |  S  C_  x }  e.  ( fBas `  X )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  { t  e.  ~P X  |  ( {
x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) } )
42, 3syl 16 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  {
t  e.  ~P X  |  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) } )
5 pweq 4018 . . . . . . 7  |-  ( t  =  u  ->  ~P t  =  ~P u
)
65ineq2d 3696 . . . . . 6  |-  ( t  =  u  ->  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =  ( { x  e.  J  |  S  C_  x }  i^i  ~P u
) )
76neeq1d 2734 . . . . 5  |-  ( t  =  u  ->  (
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/)  <->  ( {
x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) ) )
87elrab 3257 . . . 4  |-  ( u  e.  { t  e. 
~P X  |  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) }  <->  ( u  e. 
~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) ) )
9 selpw 4022 . . . . . . 7  |-  ( u  e.  ~P X  <->  u  C_  X
)
109a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  ~P X  <->  u 
C_  X ) )
11 n0 3803 . . . . . . . 8  |-  ( ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) 
<->  E. z  z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u
) )
12 elin 3683 . . . . . . . . . 10  |-  ( z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  ( z  e.  { x  e.  J  |  S  C_  x }  /\  z  e.  ~P u ) )
13 sseq2 3521 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( S  C_  x  <->  S  C_  z
) )
1413elrab 3257 . . . . . . . . . . 11  |-  ( z  e.  { x  e.  J  |  S  C_  x }  <->  ( z  e.  J  /\  S  C_  z ) )
15 selpw 4022 . . . . . . . . . . 11  |-  ( z  e.  ~P u  <->  z  C_  u )
1614, 15anbi12i 697 . . . . . . . . . 10  |-  ( ( z  e.  { x  e.  J  |  S  C_  x }  /\  z  e.  ~P u )  <->  ( (
z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1712, 16bitri 249 . . . . . . . . 9  |-  ( z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  ( (
z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1817exbii 1668 . . . . . . . 8  |-  ( E. z  z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1911, 18bitri 249 . . . . . . 7  |-  ( ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) 
<->  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
2019a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( { x  e.  J  |  S  C_  x }  i^i  ~P u
)  =/=  (/)  <->  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) ) )
2110, 20anbi12d 710 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  e.  ~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) )  <->  ( u  C_  X  /\  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) ) ) )
221isnei 19731 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( u  e.  ( ( nei `  J
) `  S )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) ) )
23223adant3 1016 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  ( ( nei `  J ) `
 S )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) ) )
24 anass 649 . . . . . . . . 9  |-  ( ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u
)  <->  ( z  e.  J  /\  ( S 
C_  z  /\  z  C_  u ) ) )
2524exbii 1668 . . . . . . . 8  |-  ( E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u )  <->  E. z
( z  e.  J  /\  ( S  C_  z  /\  z  C_  u ) ) )
26 df-rex 2813 . . . . . . . 8  |-  ( E. z  e.  J  ( S  C_  z  /\  z  C_  u )  <->  E. z
( z  e.  J  /\  ( S  C_  z  /\  z  C_  u ) ) )
2725, 26bitr4i 252 . . . . . . 7  |-  ( E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u )  <->  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) )
2827anbi2i 694 . . . . . 6  |-  ( ( u  C_  X  /\  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) )
2923, 28syl6rbbr 264 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  C_  X  /\  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )  <-> 
u  e.  ( ( nei `  J ) `
 S ) ) )
3021, 29bitrd 253 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  e.  ~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) )  <->  u  e.  ( ( nei `  J
) `  S )
) )
318, 30syl5bb 257 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  { t  e.  ~P X  | 
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/) }  <->  u  e.  ( ( nei `  J
) `  S )
) )
3231eqrdv 2454 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { t  e.  ~P X  | 
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/) }  =  ( ( nei `  J
) `  S )
)
334, 32eqtrd 2498 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  ( ( nei `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811    i^i cin 3470    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   U.cuni 4251   ` cfv 5594  (class class class)co 6296   fBascfbas 18533   filGencfg 18534   Topctop 19521   neicnei 19725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-fbas 18543  df-fg 18544  df-top 19526  df-nei 19726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator