Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neifg Structured version   Visualization version   Unicode version

Theorem neifg 31098
Description: The neighborhood filter of a nonempty set is generated by its open supersets. See comments for opnfbas 20935. (Contributed by Jeff Hankins, 3-Sep-2009.)
Hypothesis
Ref Expression
neifg.1  |-  X  = 
U. J
Assertion
Ref Expression
neifg  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  ( ( nei `  J
) `  S )
)
Distinct variable groups:    x, J    x, S    x, X

Proof of Theorem neifg
Dummy variables  u  t  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifg.1 . . . 4  |-  X  = 
U. J
21opnfbas 20935 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { x  e.  J  |  S  C_  x }  e.  (
fBas `  X )
)
3 fgval 20963 . . 3  |-  ( { x  e.  J  |  S  C_  x }  e.  ( fBas `  X )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  { t  e.  ~P X  |  ( {
x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) } )
42, 3syl 17 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  {
t  e.  ~P X  |  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) } )
5 pweq 3945 . . . . . . 7  |-  ( t  =  u  ->  ~P t  =  ~P u
)
65ineq2d 3625 . . . . . 6  |-  ( t  =  u  ->  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =  ( { x  e.  J  |  S  C_  x }  i^i  ~P u
) )
76neeq1d 2702 . . . . 5  |-  ( t  =  u  ->  (
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/)  <->  ( {
x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) ) )
87elrab 3184 . . . 4  |-  ( u  e.  { t  e. 
~P X  |  ( { x  e.  J  |  S  C_  x }  i^i  ~P t )  =/=  (/) }  <->  ( u  e. 
~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) ) )
9 selpw 3949 . . . . . . 7  |-  ( u  e.  ~P X  <->  u  C_  X
)
109a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  ~P X  <->  u 
C_  X ) )
11 n0 3732 . . . . . . . 8  |-  ( ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) 
<->  E. z  z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u
) )
12 elin 3608 . . . . . . . . . 10  |-  ( z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  ( z  e.  { x  e.  J  |  S  C_  x }  /\  z  e.  ~P u ) )
13 sseq2 3440 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( S  C_  x  <->  S  C_  z
) )
1413elrab 3184 . . . . . . . . . . 11  |-  ( z  e.  { x  e.  J  |  S  C_  x }  <->  ( z  e.  J  /\  S  C_  z ) )
15 selpw 3949 . . . . . . . . . . 11  |-  ( z  e.  ~P u  <->  z  C_  u )
1614, 15anbi12i 711 . . . . . . . . . 10  |-  ( ( z  e.  { x  e.  J  |  S  C_  x }  /\  z  e.  ~P u )  <->  ( (
z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1712, 16bitri 257 . . . . . . . . 9  |-  ( z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  ( (
z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1817exbii 1726 . . . . . . . 8  |-  ( E. z  z  e.  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  <->  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
1911, 18bitri 257 . . . . . . 7  |-  ( ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) 
<->  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )
2019a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( { x  e.  J  |  S  C_  x }  i^i  ~P u
)  =/=  (/)  <->  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) ) )
2110, 20anbi12d 725 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  e.  ~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) )  <->  ( u  C_  X  /\  E. z
( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) ) ) )
221isnei 20196 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( u  e.  ( ( nei `  J
) `  S )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) ) )
23223adant3 1050 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  ( ( nei `  J ) `
 S )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) ) )
24 anass 661 . . . . . . . . 9  |-  ( ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u
)  <->  ( z  e.  J  /\  ( S 
C_  z  /\  z  C_  u ) ) )
2524exbii 1726 . . . . . . . 8  |-  ( E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u )  <->  E. z
( z  e.  J  /\  ( S  C_  z  /\  z  C_  u ) ) )
26 df-rex 2762 . . . . . . . 8  |-  ( E. z  e.  J  ( S  C_  z  /\  z  C_  u )  <->  E. z
( z  e.  J  /\  ( S  C_  z  /\  z  C_  u ) ) )
2725, 26bitr4i 260 . . . . . . 7  |-  ( E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u )  <->  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) )
2827anbi2i 708 . . . . . 6  |-  ( ( u  C_  X  /\  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )  <->  ( u  C_  X  /\  E. z  e.  J  ( S  C_  z  /\  z  C_  u ) ) )
2923, 28syl6rbbr 272 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  C_  X  /\  E. z ( ( z  e.  J  /\  S  C_  z )  /\  z  C_  u ) )  <-> 
u  e.  ( ( nei `  J ) `
 S ) ) )
3021, 29bitrd 261 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( u  e.  ~P X  /\  ( { x  e.  J  |  S  C_  x }  i^i  ~P u )  =/=  (/) )  <->  u  e.  ( ( nei `  J
) `  S )
) )
318, 30syl5bb 265 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
u  e.  { t  e.  ~P X  | 
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/) }  <->  u  e.  ( ( nei `  J
) `  S )
) )
3231eqrdv 2469 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  { t  e.  ~P X  | 
( { x  e.  J  |  S  C_  x }  i^i  ~P t
)  =/=  (/) }  =  ( ( nei `  J
) `  S )
)
334, 32eqtrd 2505 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( X filGen { x  e.  J  |  S  C_  x } )  =  ( ( nei `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   E.wrex 2757   {crab 2760    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U.cuni 4190   ` cfv 5589  (class class class)co 6308   fBascfbas 19035   filGencfg 19036   Topctop 19994   neicnei 20190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-fbas 19044  df-fg 19045  df-top 19998  df-nei 20191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator