MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neibl Unicode version

Theorem neibl 18484
Description: The neighborhoods around a point  P of a metric space are those subsets containing a ball around  P. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
neibl  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
Distinct variable groups:    D, r    J, r    N, r    P, r    X, r

Proof of Theorem neibl
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5  |-  J  =  ( MetOpen `  D )
21mopntop 18423 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
32adantr 452 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  J  e.  Top )
41mopnuni 18424 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  X  =  U. J )
54eleq2d 2471 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  ( P  e.  X  <->  P  e.  U. J ) )
65biimpa 471 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  P  e.  U. J )
7 eqid 2404 . . . 4  |-  U. J  =  U. J
87isneip 17124 . . 3  |-  ( ( J  e.  Top  /\  P  e.  U. J )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
93, 6, 8syl2anc 643 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
104sseq2d 3336 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  ( N  C_  X  <->  N  C_  U. J
) )
1110adantr 452 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( N  C_  X  <->  N  C_  U. J
) )
1211anbi1d 686 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( ( N  C_  X  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )  <-> 
( N  C_  U. J  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
131mopni2 18476 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  J  /\  P  e.  y
)  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  y
)
14 sstr2 3315 . . . . . . . . . . 11  |-  ( ( P ( ball `  D
) r )  C_  y  ->  ( y  C_  N  ->  ( P (
ball `  D )
r )  C_  N
) )
1514com12 29 . . . . . . . . . 10  |-  ( y 
C_  N  ->  (
( P ( ball `  D ) r ) 
C_  y  ->  ( P ( ball `  D
) r )  C_  N ) )
1615reximdv 2777 . . . . . . . . 9  |-  ( y 
C_  N  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  y  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
1713, 16syl5com 28 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  J  /\  P  e.  y
)  ->  ( y  C_  N  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) )
18173exp 1152 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  (
y  e.  J  -> 
( P  e.  y  ->  ( y  C_  N  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) ) ) )
1918imp4a 573 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  (
y  e.  J  -> 
( ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
2019ad2antrr 707 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  (
y  e.  J  -> 
( ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
2120rexlimdv 2789 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. y  e.  J  ( P  e.  y  /\  y  C_  N )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
22 rpxr 10575 . . . . . . . . 9  |-  ( r  e.  RR+  ->  r  e. 
RR* )
231blopn 18483 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  r  e.  RR* )  ->  ( P ( ball `  D ) r )  e.  J )
2422, 23syl3an3 1219 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  ( P ( ball `  D ) r )  e.  J )
25 blcntr 18396 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) r ) )
26 eleq2 2465 . . . . . . . . . . 11  |-  ( y  =  ( P (
ball `  D )
r )  ->  ( P  e.  y  <->  P  e.  ( P ( ball `  D
) r ) ) )
27 sseq1 3329 . . . . . . . . . . 11  |-  ( y  =  ( P (
ball `  D )
r )  ->  (
y  C_  N  <->  ( P
( ball `  D )
r )  C_  N
) )
2826, 27anbi12d 692 . . . . . . . . . 10  |-  ( y  =  ( P (
ball `  D )
r )  ->  (
( P  e.  y  /\  y  C_  N
)  <->  ( P  e.  ( P ( ball `  D ) r )  /\  ( P (
ball `  D )
r )  C_  N
) ) )
2928rspcev 3012 . . . . . . . . 9  |-  ( ( ( P ( ball `  D ) r )  e.  J  /\  ( P  e.  ( P
( ball `  D )
r )  /\  ( P ( ball `  D
) r )  C_  N ) )  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )
3029expr 599 . . . . . . . 8  |-  ( ( ( P ( ball `  D ) r )  e.  J  /\  P  e.  ( P ( ball `  D ) r ) )  ->  ( ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3124, 25, 30syl2anc 643 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  ( ( P (
ball `  D )
r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
32313expia 1155 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( r  e.  RR+  ->  ( ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) ) )
3332rexlimdv 2789 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3433adantr 452 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N  ->  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) ) )
3521, 34impbid 184 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. y  e.  J  ( P  e.  y  /\  y  C_  N )  <->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) )
3635pm5.32da 623 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( ( N  C_  X  /\  E. y  e.  J  ( P  e.  y  /\  y  C_  N ) )  <-> 
( N  C_  X  /\  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  N ) ) )
379, 12, 363bitr2d 273 1  |-  ( ( D  e.  ( * Met `  X )  /\  P  e.  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E.wrex 2667    C_ wss 3280   {csn 3774   U.cuni 3975   ` cfv 5413  (class class class)co 6040   RR*cxr 9075   RR+crp 10568   * Metcxmt 16641   ballcbl 16643   MetOpencmopn 16646   Topctop 16913   neicnei 17116
This theorem is referenced by:  reperflem  18802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-topgen 13622  df-psmet 16649  df-xmet 16650  df-bl 16652  df-mopn 16653  df-top 16918  df-bases 16920  df-topon 16921  df-nei 17117
  Copyright terms: Public domain W3C validator