Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Visualization version   Unicode version

Theorem neibastop3 31089
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1  |-  ( ph  ->  X  e.  V )
neibastop1.2  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
neibastop1.3  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
neibastop1.4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
neibastop1.5  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
neibastop1.6  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
Assertion
Ref Expression
neibastop3  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Distinct variable groups:    t, n, v, y, j, x    j, J    x, n, J, v, y    t, o, v, w, x, y, j, F, n    ph, j, n, o, t, v, w, x, y    j, X, n, o, t, v, w, x, y
Allowed substitution hints:    J( w, t, o)    V( x, y, w, v, t, j, n, o)

Proof of Theorem neibastop3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4  |-  ( ph  ->  X  e.  V )
2 neibastop1.2 . . . 4  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
3 neibastop1.3 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
4 neibastop1.4 . . . 4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
51, 2, 3, 4neibastop1 31086 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 neibastop1.5 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
7 neibastop1.6 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
81, 2, 3, 4, 6, 7neibastop2 31088 . . . . . . . 8  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  C_  X  /\  ( ( F `
 z )  i^i 
~P n )  =/=  (/) ) ) )
9 selpw 3949 . . . . . . . . 9  |-  ( n  e.  ~P X  <->  n  C_  X
)
109anbi1i 709 . . . . . . . 8  |-  ( ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) )  <->  ( n  C_  X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
118, 10syl6bbr 271 . . . . . . 7  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  e. 
~P X  /\  (
( F `  z
)  i^i  ~P n
)  =/=  (/) ) ) )
1211abbi2dv 2590 . . . . . 6  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  |  ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) } )
13 df-rab 2765 . . . . . 6  |-  { n  e.  ~P X  |  ( ( F `  z
)  i^i  ~P n
)  =/=  (/) }  =  { n  |  (
n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) }
1412, 13syl6eqr 2523 . . . . 5  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
1514ralrimiva 2809 . . . 4  |-  ( ph  ->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
16 sneq 3969 . . . . . . 7  |-  ( x  =  z  ->  { x }  =  { z } )
1716fveq2d 5883 . . . . . 6  |-  ( x  =  z  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { z } ) )
18 fveq2 5879 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1918ineq1d 3624 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  z )  i^i  ~P n ) )
2019neeq1d 2702 . . . . . . 7  |-  ( x  =  z  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
2120rabbidv 3022 . . . . . 6  |-  ( x  =  z  ->  { n  e.  ~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } )
2217, 21eqeq12d 2486 . . . . 5  |-  ( x  =  z  ->  (
( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
z } )  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } ) )
2322cbvralv 3005 . . . 4  |-  ( A. x  e.  X  (
( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
2415, 23sylibr 217 . . 3  |-  ( ph  ->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
25 toponuni 20019 . . . . . . . . . 10  |-  ( j  e.  (TopOn `  X
)  ->  X  =  U. j )
26 eqimss2 3471 . . . . . . . . . 10  |-  ( X  =  U. j  ->  U. j  C_  X )
2725, 26syl 17 . . . . . . . . 9  |-  ( j  e.  (TopOn `  X
)  ->  U. j  C_  X )
28 sspwuni 4360 . . . . . . . . 9  |-  ( j 
C_  ~P X  <->  U. j  C_  X )
2927, 28sylibr 217 . . . . . . . 8  |-  ( j  e.  (TopOn `  X
)  ->  j  C_  ~P X )
3029ad2antlr 741 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  C_  ~P X )
31 dfss1 3628 . . . . . . 7  |-  ( j 
C_  ~P X  <->  ( ~P X  i^i  j )  =  j )
3230, 31sylib 201 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  j )
33 topontop 20018 . . . . . . . . . . 11  |-  ( j  e.  (TopOn `  X
)  ->  j  e.  Top )
3433ad3antlr 745 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
j  e.  Top )
35 eltop2 20068 . . . . . . . . . 10  |-  ( j  e.  Top  ->  (
o  e.  j  <->  A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o  E. z  e.  j 
( x  e.  z  /\  z  C_  o
) ) )
37 elpwi 3951 . . . . . . . . . . . . . . 15  |-  ( o  e.  ~P X  -> 
o  C_  X )
38 ssralv 3479 . . . . . . . . . . . . . . 15  |-  ( o 
C_  X  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
3937, 38syl 17 . . . . . . . . . . . . . 14  |-  ( o  e.  ~P X  -> 
( A. x  e.  X  ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
4039adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
41 simprr 774 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
4241eleq2d 2534 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  o  e.  { n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
4333ad3antlr 745 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
j  e.  Top )
4425adantl 473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  X  =  U. j )
4544sseq2d 3446 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  ( o  C_  X 
<->  o  C_  U. j
) )
4645biimpa 492 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  C_  X )  ->  o  C_ 
U. j )
4737, 46sylan2 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  o  C_ 
U. j )
4847sselda 3418 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  x  e.  U. j
)
4948adantrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  ->  x  e.  U. j
)
5047adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
o  C_  U. j
)
51 eqid 2471 . . . . . . . . . . . . . . . . . . 19  |-  U. j  =  U. j
5251isneip 20198 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  x  e.  U. j
)  ->  ( o  e.  ( ( nei `  j
) `  { x } )  <->  ( o  C_ 
U. j  /\  E. z  e.  j  (
x  e.  z  /\  z  C_  o ) ) ) )
5352baibd 923 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  x  e.  U. j
)  /\  o  C_  U. j )  ->  (
o  e.  ( ( nei `  j ) `
 { x }
)  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o
) ) )
5443, 49, 50, 53syl21anc 1291 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
55 pweq 3945 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  o  ->  ~P n  =  ~P o
)
5655ineq2d 3625 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  o  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  x )  i^i  ~P o ) )
5756neeq1d 2702 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  o  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
5857elrab3 3185 . . . . . . . . . . . . . . . . 17  |-  ( o  e.  ~P X  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
5958ad2antlr 741 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
6042, 54, 593bitr3d 291 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6160expr 626 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  ( ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6261ralimdva 2805 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  o 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6340, 62syld 44 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6463imp 436 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6564an32s 821 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  ->  A. x  e.  o 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
66 ralbi 2908 . . . . . . . . . 10  |-  ( A. x  e.  o  ( E. z  e.  j 
( x  e.  z  /\  z  C_  o
)  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) )  ->  ( A. x  e.  o  E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6765, 66syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6836, 67bitrd 261 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o 
( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6968rabbi2dva 3631 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  {
o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) } )
7069, 4syl6eqr 2523 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  J )
7132, 70eqtr3d 2507 . . . . 5  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  =  J )
7271expl 630 . . . 4  |-  ( ph  ->  ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
7372alrimiv 1781 . . 3  |-  ( ph  ->  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
74 eleq1 2537 . . . . 5  |-  ( j  =  J  ->  (
j  e.  (TopOn `  X )  <->  J  e.  (TopOn `  X ) ) )
75 fveq2 5879 . . . . . . . 8  |-  ( j  =  J  ->  ( nei `  j )  =  ( nei `  J
) )
7675fveq1d 5881 . . . . . . 7  |-  ( j  =  J  ->  (
( nei `  j
) `  { x } )  =  ( ( nei `  J
) `  { x } ) )
7776eqeq1d 2473 . . . . . 6  |-  ( j  =  J  ->  (
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) } ) )
7877ralbidv 2829 . . . . 5  |-  ( j  =  J  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
7974, 78anbi12d 725 . . . 4  |-  ( j  =  J  ->  (
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  <->  ( J  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) ) )
8079eqeu 3197 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  J ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  /\  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )  ->  E! j ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
815, 5, 24, 73, 80syl121anc 1297 . 2  |-  ( ph  ->  E! j ( j  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
82 df-reu 2763 . 2  |-  ( E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  <->  E! j
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
8381, 82sylibr 217 1  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    = wceq 1452    e. wcel 1904   E!weu 2319   {cab 2457    =/= wne 2641   A.wral 2756   E.wrex 2757   E!wreu 2758   {crab 2760    \ cdif 3387    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U.cuni 4190   -->wf 5585   ` cfv 5589   Topctop 19994  TopOnctopon 19995   neicnei 20190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-topgen 15420  df-top 19998  df-topon 20000  df-nei 20191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator