Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Unicode version

Theorem neibastop3 28492
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1  |-  ( ph  ->  X  e.  V )
neibastop1.2  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
neibastop1.3  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
neibastop1.4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
neibastop1.5  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
neibastop1.6  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
Assertion
Ref Expression
neibastop3  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Distinct variable groups:    t, n, v, y, j, x    j, J    x, n, J, v, y    t, o, v, w, x, y, j, F, n    ph, j, n, o, t, v, w, x, y    j, X, n, o, t, v, w, x, y
Allowed substitution hints:    J( w, t, o)    V( x, y, w, v, t, j, n, o)

Proof of Theorem neibastop3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4  |-  ( ph  ->  X  e.  V )
2 neibastop1.2 . . . 4  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
3 neibastop1.3 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
4 neibastop1.4 . . . 4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
51, 2, 3, 4neibastop1 28489 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 neibastop1.5 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
7 neibastop1.6 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
81, 2, 3, 4, 6, 7neibastop2 28491 . . . . . . . 8  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  C_  X  /\  ( ( F `
 z )  i^i 
~P n )  =/=  (/) ) ) )
9 selpw 3864 . . . . . . . . 9  |-  ( n  e.  ~P X  <->  n  C_  X
)
109anbi1i 690 . . . . . . . 8  |-  ( ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) )  <->  ( n  C_  X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
118, 10syl6bbr 263 . . . . . . 7  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  e. 
~P X  /\  (
( F `  z
)  i^i  ~P n
)  =/=  (/) ) ) )
1211abbi2dv 2556 . . . . . 6  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  |  ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) } )
13 df-rab 2722 . . . . . 6  |-  { n  e.  ~P X  |  ( ( F `  z
)  i^i  ~P n
)  =/=  (/) }  =  { n  |  (
n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) }
1412, 13syl6eqr 2491 . . . . 5  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
1514ralrimiva 2797 . . . 4  |-  ( ph  ->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
16 sneq 3884 . . . . . . 7  |-  ( x  =  z  ->  { x }  =  { z } )
1716fveq2d 5692 . . . . . 6  |-  ( x  =  z  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { z } ) )
18 fveq2 5688 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1918ineq1d 3548 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  z )  i^i  ~P n ) )
2019neeq1d 2619 . . . . . . 7  |-  ( x  =  z  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
2120rabbidv 2962 . . . . . 6  |-  ( x  =  z  ->  { n  e.  ~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } )
2217, 21eqeq12d 2455 . . . . 5  |-  ( x  =  z  ->  (
( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
z } )  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } ) )
2322cbvralv 2945 . . . 4  |-  ( A. x  e.  X  (
( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
2415, 23sylibr 212 . . 3  |-  ( ph  ->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
25 toponuni 18432 . . . . . . . . . 10  |-  ( j  e.  (TopOn `  X
)  ->  X  =  U. j )
26 eqimss2 3406 . . . . . . . . . 10  |-  ( X  =  U. j  ->  U. j  C_  X )
2725, 26syl 16 . . . . . . . . 9  |-  ( j  e.  (TopOn `  X
)  ->  U. j  C_  X )
28 sspwuni 4253 . . . . . . . . 9  |-  ( j 
C_  ~P X  <->  U. j  C_  X )
2927, 28sylibr 212 . . . . . . . 8  |-  ( j  e.  (TopOn `  X
)  ->  j  C_  ~P X )
3029ad2antlr 721 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  C_  ~P X )
31 dfss1 3552 . . . . . . 7  |-  ( j 
C_  ~P X  <->  ( ~P X  i^i  j )  =  j )
3230, 31sylib 196 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  j )
33 topontop 18431 . . . . . . . . . . 11  |-  ( j  e.  (TopOn `  X
)  ->  j  e.  Top )
3433ad3antlr 725 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
j  e.  Top )
35 eltop2 18480 . . . . . . . . . 10  |-  ( j  e.  Top  ->  (
o  e.  j  <->  A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
3634, 35syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o  E. z  e.  j 
( x  e.  z  /\  z  C_  o
) ) )
37 elpwi 3866 . . . . . . . . . . . . . . 15  |-  ( o  e.  ~P X  -> 
o  C_  X )
38 ssralv 3413 . . . . . . . . . . . . . . 15  |-  ( o 
C_  X  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
3937, 38syl 16 . . . . . . . . . . . . . 14  |-  ( o  e.  ~P X  -> 
( A. x  e.  X  ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
4039adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
41 simprr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
4241eleq2d 2508 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  o  e.  { n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
4333ad3antlr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
j  e.  Top )
4425adantl 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  X  =  U. j )
4544sseq2d 3381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  ( o  C_  X 
<->  o  C_  U. j
) )
4645biimpa 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  C_  X )  ->  o  C_ 
U. j )
4737, 46sylan2 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  o  C_ 
U. j )
4847sselda 3353 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  x  e.  U. j
)
4948adantrr 711 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  ->  x  e.  U. j
)
5047adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
o  C_  U. j
)
51 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |-  U. j  =  U. j
5251isneip 18609 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  x  e.  U. j
)  ->  ( o  e.  ( ( nei `  j
) `  { x } )  <->  ( o  C_ 
U. j  /\  E. z  e.  j  (
x  e.  z  /\  z  C_  o ) ) ) )
5352baibd 895 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  x  e.  U. j
)  /\  o  C_  U. j )  ->  (
o  e.  ( ( nei `  j ) `
 { x }
)  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o
) ) )
5443, 49, 50, 53syl21anc 1212 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
55 pweq 3860 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  o  ->  ~P n  =  ~P o
)
5655ineq2d 3549 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  o  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  x )  i^i  ~P o ) )
5756neeq1d 2619 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  o  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
5857elrab3 3115 . . . . . . . . . . . . . . . . 17  |-  ( o  e.  ~P X  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
5958ad2antlr 721 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
6042, 54, 593bitr3d 283 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6160expr 612 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  ( ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6261ralimdva 2792 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  o 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6340, 62syld 44 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6463imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6564an32s 797 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  ->  A. x  e.  o 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
66 ralbi 2851 . . . . . . . . . 10  |-  ( A. x  e.  o  ( E. z  e.  j 
( x  e.  z  /\  z  C_  o
)  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) )  ->  ( A. x  e.  o  E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6765, 66syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6836, 67bitrd 253 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o 
( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6968rabbi2dva 3555 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  {
o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) } )
7069, 4syl6eqr 2491 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  J )
7132, 70eqtr3d 2475 . . . . 5  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  =  J )
7271expl 615 . . . 4  |-  ( ph  ->  ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
7372alrimiv 1690 . . 3  |-  ( ph  ->  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
74 eleq1 2501 . . . . 5  |-  ( j  =  J  ->  (
j  e.  (TopOn `  X )  <->  J  e.  (TopOn `  X ) ) )
75 fveq2 5688 . . . . . . . 8  |-  ( j  =  J  ->  ( nei `  j )  =  ( nei `  J
) )
7675fveq1d 5690 . . . . . . 7  |-  ( j  =  J  ->  (
( nei `  j
) `  { x } )  =  ( ( nei `  J
) `  { x } ) )
7776eqeq1d 2449 . . . . . 6  |-  ( j  =  J  ->  (
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) } ) )
7877ralbidv 2733 . . . . 5  |-  ( j  =  J  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
7974, 78anbi12d 705 . . . 4  |-  ( j  =  J  ->  (
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  <->  ( J  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) ) )
8079eqeu 3127 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  J ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  /\  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )  ->  E! j ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
815, 5, 24, 73, 80syl121anc 1218 . 2  |-  ( ph  ->  E! j ( j  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
82 df-reu 2720 . 2  |-  ( E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  <->  E! j
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
8381, 82sylibr 212 1  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960   A.wal 1362    = wceq 1364    e. wcel 1761   E!weu 2259   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   E!wreu 2715   {crab 2717    \ cdif 3322    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   {csn 3874   U.cuni 4088   -->wf 5411   ` cfv 5415   Topctop 18398  TopOnctopon 18399   neicnei 18601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-om 6476  df-recs 6828  df-rdg 6862  df-topgen 14378  df-top 18403  df-topon 18406  df-nei 18602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator