MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsubdi2d Structured version   Unicode version

Theorem negsubdi2d 9938
Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
negsubdi2d  |-  ( ph  -> 
-u ( A  -  B )  =  ( B  -  A ) )

Proof of Theorem negsubdi2d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 negsubdi2 9869 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
41, 2, 3syl2anc 659 1  |-  ( ph  -> 
-u ( A  -  B )  =  ( B  -  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1398    e. wcel 1823  (class class class)co 6270   CCcc 9479    - cmin 9796   -ucneg 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-ltxr 9622  df-sub 9798  df-neg 9799
This theorem is referenced by:  cjneg  13065  geo2sum2  13768  sinneg  13966  sinhval  13974  vitalilem1  22186  vitalilem2  22187  itgneg  22379  dvrec  22527  dvferm2lem  22556  dvfsumge  22592  dvfsumlem2  22597  dvfsum2  22604  ftc1lem5  22610  ftc2ditg  22616  plyeq0lem  22776  efif1olem2  23099  ang180  23348  isosctrlem3  23354  isosctr  23355  angpieqvdlem  23359  chordthmlem  23363  mcubic  23378  quart1lem  23386  quartlem1  23388  atanneg  23438  atancj  23441  efiatan  23443  atanlogsub  23447  efiatan2  23448  2efiatan  23449  atantan  23454  atanbndlem  23456  pntrsumo1  23951  pntrlog2bndlem2  23964  pntrlog2bndlem4  23966  pntibndlem2  23977  brbtwn2  24413  colinearalglem4  24417  axsegconlem9  24433  dipcj  25828  bcm1n  27837  signsplypnf  28774  bpoly3  30051  itg2addnclem3  30311  itg2gt0cn  30313  icodiamlt  30998  congsym  31148  cvgdvgrat  31438  negsubdi3d  31726  lptre2pt  31888  stoweidlem13  32037  dirkertrigeqlem2  32123  fourierdlem26  32157  fourierdlem89  32220  fourierdlem90  32221  fourierdlem91  32222  fourierdlem107  32238  etransclem23  32282  sharhght  32324  sigaradd  32325  cevathlem2  32327
  Copyright terms: Public domain W3C validator