MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negnegi Unicode version

Theorem negnegi 8996
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypothesis
Ref Expression
negidi.1  |-  A  e.  CC
Assertion
Ref Expression
negnegi  |-  -u -u A  =  A

Proof of Theorem negnegi
StepHypRef Expression
1 negidi.1 . 2  |-  A  e.  CC
2 negneg 8977 . 2  |-  ( A  e.  CC  ->  -u -u A  =  A )
31, 2ax-mp 10 1  |-  -u -u A  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   CCcc 8615   -ucneg 8918
This theorem is referenced by:  negsubdii  9011  m1expcl2  11003  crreczi  11104  absi  11648  sinhval  12308  coshval  12309  xrhmeo  18276  iblcnlem1  18974  itgcnlem  18976  dvsincos  19160  asinlem3a  19998  atandm2  20005  efiasin  20016  asinsinlem  20019  asinsin  20020  asin1  20022  atanlogsub  20044  atanbnd  20054  atantayl2  20066  basellem8  20157  lgsneg  20390  lgsdilem  20393  lgsdir2lem4  20397  lgsdir2  20399  ex-fl  20647  nvpi  21062  ipasslem10  21247  hvaddsubval  21442  polid2i  21566  lnophmlem2  22427
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-sub 8919  df-neg 8920
  Copyright terms: Public domain W3C validator