MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negicn Structured version   Unicode version

Theorem negicn 9777
Description:  -u _i is a complex number (common case). (Contributed by David A. Wheeler, 7-Dec-2018.)
Assertion
Ref Expression
negicn  |-  -u _i  e.  CC

Proof of Theorem negicn
StepHypRef Expression
1 ax-icn 9501 . 2  |-  _i  e.  CC
2 negcl 9776 . 2  |-  ( _i  e.  CC  ->  -u _i  e.  CC )
31, 2ax-mp 5 1  |-  -u _i  e.  CC
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1842   CCcc 9440   _ici 9444   -ucneg 9762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-pnf 9580  df-mnf 9581  df-ltxr 9583  df-sub 9763  df-neg 9764
This theorem is referenced by:  irec  12222  imcl  13000  absimle  13198  recan  13225  sinf  13960  cosf  13961  tanval2  13969  tanval3  13970  efi4p  13973  sinneg  13982  cosneg  13983  efival  13988  sinhval  13990  coshval  13991  sinadd  14000  cosadd  14001  dvsincos  22566  sincn  23023  coscn  23024  sinperlem  23057  pige3  23094  sineq0  23098  tanregt0  23110  asinlem3a  23418  asinf  23420  asinneg  23434  efiasin  23436  sinasin  23437  asinsinlem  23439  asinsin  23440  asin1  23442  2efiatan  23466  dvatan  23483  atantayl  23485  nvpi  25863  ipval2  25911  4ipval2  25912  ipidsq  25917  dipcj  25921  dip0r  25924  ipasslem10  26048  polid2i  26368  dvasin  31455  areacirclem4  31462  sineq0ALT  36749
  Copyright terms: Public domain W3C validator