MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtrri Structured version   Unicode version

Theorem neeqtrri 2759
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrr.1  |-  A  =/= 
B
neeqtrr.2  |-  C  =  B
Assertion
Ref Expression
neeqtrri  |-  A  =/= 
C

Proof of Theorem neeqtrri
StepHypRef Expression
1 neeqtrr.1 . 2  |-  A  =/= 
B
2 neeqtrr.2 . . 3  |-  C  =  B
32eqcomi 2473 . 2  |-  B  =  C
41, 3neeqtri 2758 1  |-  A  =/= 
C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374    =/= wne 2655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-ext 2438
This theorem depends on definitions:  df-bi 185  df-cleq 2452  df-ne 2657
This theorem is referenced by:  cflim2  8632  pnfnemnf  11315  resslem  14537  zlmlem  18314  matbas  18675  matplusg  18676  matvsca  18678  tnglem  20882  resvlem  27334  limsucncmpi  29337
  Copyright terms: Public domain W3C validator