MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtri Structured version   Unicode version

Theorem neeqtri 2765
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtr.1  |-  A  =/= 
B
neeqtr.2  |-  B  =  C
Assertion
Ref Expression
neeqtri  |-  A  =/= 
C

Proof of Theorem neeqtri
StepHypRef Expression
1 neeqtr.1 . 2  |-  A  =/= 
B
2 neeqtr.2 . . 3  |-  B  =  C
32neeq2i 2754 . 2  |-  ( A  =/=  B  <->  A  =/=  C )
41, 3mpbi 208 1  |-  A  =/= 
C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    =/= wne 2662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-cleq 2459  df-ne 2664
This theorem is referenced by:  neeqtrri  2766
  Copyright terms: Public domain W3C validator