MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2iOLD Structured version   Unicode version

Theorem neeq2iOLD 2710
Description: Obsolete proof of neeq2i 2709 as of 19-Nov-2019. (Contributed by NM, 29-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
neeq1i.1  |-  A  =  B
Assertion
Ref Expression
neeq2iOLD  |-  ( C  =/=  A  <->  C  =/=  B )

Proof of Theorem neeq2iOLD
StepHypRef Expression
1 neeq1i.1 . 2  |-  A  =  B
2 neeq2 2705 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2ax-mp 5 1  |-  ( C  =/=  A  <->  C  =/=  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    = wceq 1437    =/= wne 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-ext 2398
This theorem depends on definitions:  df-bi 188  df-cleq 2412  df-ne 2618
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator