MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeq2iOLD Structured version   Unicode version

Theorem neeq2iOLD 2755
Description: Obsolete proof of neeq2i 2754 as of 19-Nov-2019. (Contributed by NM, 29-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
neeq1i.1  |-  A  =  B
Assertion
Ref Expression
neeq2iOLD  |-  ( C  =/=  A  <->  C  =/=  B )

Proof of Theorem neeq2iOLD
StepHypRef Expression
1 neeq1i.1 . 2  |-  A  =  B
2 neeq2 2750 . 2  |-  ( A  =  B  ->  ( C  =/=  A  <->  C  =/=  B ) )
31, 2ax-mp 5 1  |-  ( C  =/=  A  <->  C  =/=  B )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1379    =/= wne 2662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-cleq 2459  df-ne 2664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator