![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neeq2i | Structured version Visualization version Unicode version |
Description: Inference for inequality. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
neeq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neeq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqeq2i 2473 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | necon3bii 2687 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-ext 2441 |
This theorem depends on definitions: df-bi 190 df-cleq 2454 df-ne 2634 |
This theorem is referenced by: neeqtri 2707 suppvalbr 6944 disjdsct 28331 divnumden2 28429 nosgnn0 30593 upgr3v3e3cycl 39920 upgr4cycl4dv4e 39925 |
Copyright terms: Public domain | W3C validator |