MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon4adOLD Structured version   Unicode version

Theorem necon4adOLD 2617
Description: Obsolete proof of necon4ad 2616 as of 23-Nov-2019. (Contributed by NM, 2-Apr-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
necon4ad.1  |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )
Assertion
Ref Expression
necon4adOLD  |-  ( ph  ->  ( ps  ->  A  =  B ) )

Proof of Theorem necon4adOLD
StepHypRef Expression
1 necon4ad.1 . . 3  |-  ( ph  ->  ( A  =/=  B  ->  -.  ps ) )
21con2d 115 . 2  |-  ( ph  ->  ( ps  ->  -.  A  =/=  B ) )
3 nne 2597 . 2  |-  ( -.  A  =/=  B  <->  A  =  B )
42, 3syl6ib 226 1  |-  ( ph  ->  ( ps  ->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1399    =/= wne 2591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator