MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2i Structured version   Unicode version

Theorem necon2i 2703
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.)
Hypothesis
Ref Expression
necon2i.1  |-  ( A  =  B  ->  C  =/=  D )
Assertion
Ref Expression
necon2i  |-  ( C  =  D  ->  A  =/=  B )

Proof of Theorem necon2i
StepHypRef Expression
1 necon2i.1 . . 3  |-  ( A  =  B  ->  C  =/=  D )
21neneqd 2662 . 2  |-  ( A  =  B  ->  -.  C  =  D )
32necon2ai 2695 1  |-  ( C  =  D  ->  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    =/= wne 2655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2657
This theorem is referenced by:  cmpfi  19667  mcubic  22899  cubic2  22900  2sqlem11  23371  ovoliunnfl  29620  voliunnfl  29622  volsupnfl  29623  mncn0  30682  aaitgo  30705
  Copyright terms: Public domain W3C validator