MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon2abidOLD Structured version   Unicode version

Theorem necon2abidOLD 2712
Description: Obsolete proof of necon2abid 2711 as of 24-Nov-2019. (Contributed by NM, 18-Jul-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
necon2abid.1  |-  ( ph  ->  ( A  =  B  <->  -.  ps ) )
Assertion
Ref Expression
necon2abidOLD  |-  ( ph  ->  ( ps  <->  A  =/=  B ) )

Proof of Theorem necon2abidOLD
StepHypRef Expression
1 necon2abid.1 . . 3  |-  ( ph  ->  ( A  =  B  <->  -.  ps ) )
21con2bid 329 . 2  |-  ( ph  ->  ( ps  <->  -.  A  =  B ) )
3 df-ne 2654 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
42, 3syl6bbr 263 1  |-  ( ph  ->  ( ps  <->  A  =/=  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    = wceq 1395    =/= wne 2652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-ne 2654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator