MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bbii Structured version   Visualization version   Unicode version

Theorem necon1bbii 2685
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.)
Hypothesis
Ref Expression
necon1bbii.1  |-  ( A  =/=  B  <->  ph )
Assertion
Ref Expression
necon1bbii  |-  ( -. 
ph 
<->  A  =  B )

Proof of Theorem necon1bbii
StepHypRef Expression
1 nne 2639 . 2  |-  ( -.  A  =/=  B  <->  A  =  B )
2 necon1bbii.1 . 2  |-  ( A  =/=  B  <->  ph )
31, 2xchnxbi 314 1  |-  ( -. 
ph 
<->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    = wceq 1455    =/= wne 2633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-ne 2635
This theorem is referenced by:  necon2bbii  2687  rabeq0  3766  intnex  4574  class2set  4584  csbopab  4747  relimasn  5210  modom  7799  supval2  7995  fzo0  11973  vma1  24142  lgsquadlem3  24333  ordtconlem1  28779
  Copyright terms: Public domain W3C validator