MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdssub Structured version   Unicode version

Theorem ndvdssub 14076
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )

Proof of Theorem ndvdssub
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 10823 . . . . . . . 8  |-  ( K  e.  NN  ->  K  e.  NN0 )
2 nnne0 10589 . . . . . . . 8  |-  ( K  e.  NN  ->  K  =/=  0 )
31, 2jca 532 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  e.  NN0  /\  K  =/=  0 ) )
4 df-ne 2654 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
54anbi2i 694 . . . . . . . . . . 11  |-  ( ( K  <  D  /\  K  =/=  0 )  <->  ( K  <  D  /\  -.  K  =  0 ) )
6 divalg2 14074 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
7 breq1 4459 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  =  x  ->  (
r  <  D  <->  x  <  D ) )
8 oveq2 6304 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
98breq2d 4468 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
107, 9anbi12d 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( x  <  D  /\  D  ||  ( N  -  x ) ) ) )
1110reu4 3293 . . . . . . . . . . . . . . . . . . . 20  |-  ( E! r  e.  NN0  (
r  <  D  /\  D  ||  ( N  -  r ) )  <->  ( E. r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
126, 11sylib 196 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E. r  e. 
NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  A. r  e.  NN0  A. x  e. 
NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
1312simprd 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  NN0  A. x  e.  NN0  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( x  <  D  /\  D  ||  ( N  -  x
) ) )  -> 
r  =  x ) )
14 nngt0 10585 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( D  e.  NN  ->  0  <  D )
15143ad2ant2 1018 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  0  <  D )
16 zcn 10890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ZZ  ->  N  e.  CC )
1716subid1d 9939 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
1817breq2d 4468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ZZ  ->  ( D  ||  ( N  - 
0 )  <->  D  ||  N
) )
1918biimpar 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  ZZ  /\  D  ||  N )  ->  D  ||  ( N  - 
0 ) )
20193adant2 1015 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  D  ||  ( N  -  0 ) )
2115, 20jca 532 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) )
22213expa 1196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )
2322anim2i 569 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N ) )  -> 
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2423ancoms 453 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) ) )
25 0nn0 10831 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  NN0
26 breq1 4459 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  (
x  <  D  <->  0  <  D ) )
27 oveq2 6304 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  0  ->  ( N  -  x )  =  ( N  - 
0 ) )
2827breq2d 4468 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  0 ) ) )
2926, 28anbi12d 710 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  0  ->  (
( x  <  D  /\  D  ||  ( N  -  x ) )  <-> 
( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
3029anbi2d 703 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( x  <  D  /\  D  ||  ( N  -  x
) ) )  <->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) ) )
31 eqeq2 2472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
r  =  x  <->  r  = 
0 ) )
3230, 31imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  0  ->  (
( ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  <->  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  ->  r  = 
0 ) ) )
3332rspcv 3206 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  NN0  ->  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) ) )
3425, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) )
3524, 34syl5 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  r  =  0 ) )
3635expd 436 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
3736ralimi 2850 . . . . . . . . . . . . . . . . . 18  |-  ( A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
3813, 37syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
39 r19.21v 2862 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 ) )  <->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
4038, 39sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
4140expd 436 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) ) )
4241pm2.43i 47 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
43423impia 1193 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) )
44 breq1 4459 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  (
r  <  D  <->  K  <  D ) )
45 oveq2 6304 . . . . . . . . . . . . . . . . 17  |-  ( r  =  K  ->  ( N  -  r )  =  ( N  -  K ) )
4645breq2d 4468 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  K )
) )
4744, 46anbi12d 710 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( K  <  D  /\  D  ||  ( N  -  K ) ) ) )
48 eqeq1 2461 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
r  =  0  <->  K  =  0 ) )
4947, 48imbi12d 320 . . . . . . . . . . . . . 14  |-  ( r  =  K  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 )  <->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
5049rspcv 3206 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 )  ->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
5143, 50syl5com 30 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 ) ) )
52 pm4.14 578 . . . . . . . . . . . 12  |-  ( ( ( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 )  <->  ( ( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K )
) )
5351, 52syl6ib 226 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K
) ) ) )
545, 53syl7bi 230 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  K  =/=  0
)  ->  -.  D  ||  ( N  -  K
) ) ) )
5554exp4a 606 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  ( K  <  D  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5655com23 78 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN0  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5756imp4a 589 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  (
( K  e.  NN0  /\  K  =/=  0 )  ->  -.  D  ||  ( N  -  K )
) ) )
583, 57syl7 68 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN  ->  -.  D  ||  ( N  -  K ) ) ) )
5958com23 78 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN  ->  ( K  <  D  ->  -.  D  ||  ( N  -  K ) ) ) )
6059impd 431 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
( K  e.  NN  /\  K  <  D )  ->  -.  D  ||  ( N  -  K )
) )
61603expia 1198 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  -.  D  ||  ( N  -  K ) ) ) )
6261com23 78 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) ) )
63623impia 1193 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   E!wreu 2809   class class class wbr 4456  (class class class)co 6296   0cc0 9509    < clt 9645    - cmin 9824   NNcn 10556   NN0cn0 10816   ZZcz 10885    || cdvds 13997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-dvds 13998
This theorem is referenced by:  ndvdsadd  14077
  Copyright terms: Public domain W3C validator