MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdsadd Structured version   Unicode version

Theorem ndvdsadd 13711
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  +  1,  N  +  2...  N  +  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  +  K )
) )

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 10427 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  RR )
2 nnre 10427 . . . . . . . . 9  |-  ( D  e.  NN  ->  D  e.  RR )
3 posdif 9930 . . . . . . . . 9  |-  ( ( K  e.  RR  /\  D  e.  RR )  ->  ( K  <  D  <->  0  <  ( D  -  K ) ) )
41, 2, 3syl2anr 478 . . . . . . . 8  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( K  <  D  <->  0  <  ( D  -  K ) ) )
54pm5.32i 637 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  K  <  D
)  <->  ( ( D  e.  NN  /\  K  e.  NN )  /\  0  <  ( D  -  K
) ) )
6 nnz 10766 . . . . . . . . 9  |-  ( D  e.  NN  ->  D  e.  ZZ )
7 nnz 10766 . . . . . . . . 9  |-  ( K  e.  NN  ->  K  e.  ZZ )
8 zsubcl 10785 . . . . . . . . 9  |-  ( ( D  e.  ZZ  /\  K  e.  ZZ )  ->  ( D  -  K
)  e.  ZZ )
96, 7, 8syl2an 477 . . . . . . . 8  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( D  -  K
)  e.  ZZ )
10 elnnz 10754 . . . . . . . . 9  |-  ( ( D  -  K )  e.  NN  <->  ( ( D  -  K )  e.  ZZ  /\  0  < 
( D  -  K
) ) )
1110biimpri 206 . . . . . . . 8  |-  ( ( ( D  -  K
)  e.  ZZ  /\  0  <  ( D  -  K ) )  -> 
( D  -  K
)  e.  NN )
129, 11sylan 471 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  0  <  ( D  -  K )
)  ->  ( D  -  K )  e.  NN )
135, 12sylbi 195 . . . . . 6  |-  ( ( ( D  e.  NN  /\  K  e.  NN )  /\  K  <  D
)  ->  ( D  -  K )  e.  NN )
1413anasss 647 . . . . 5  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  -  K )  e.  NN )
15 nngt0 10449 . . . . . . . 8  |-  ( K  e.  NN  ->  0  <  K )
16 ltsubpos 9929 . . . . . . . . . . 11  |-  ( ( K  e.  RR  /\  D  e.  RR )  ->  ( 0  <  K  <->  ( D  -  K )  <  D ) )
171, 2, 16syl2an 477 . . . . . . . . . 10  |-  ( ( K  e.  NN  /\  D  e.  NN )  ->  ( 0  <  K  <->  ( D  -  K )  <  D ) )
1817biimpd 207 . . . . . . . . 9  |-  ( ( K  e.  NN  /\  D  e.  NN )  ->  ( 0  <  K  ->  ( D  -  K
)  <  D )
)
1918expcom 435 . . . . . . . 8  |-  ( D  e.  NN  ->  ( K  e.  NN  ->  ( 0  <  K  -> 
( D  -  K
)  <  D )
) )
2015, 19mpdi 42 . . . . . . 7  |-  ( D  e.  NN  ->  ( K  e.  NN  ->  ( D  -  K )  <  D ) )
2120imp 429 . . . . . 6  |-  ( ( D  e.  NN  /\  K  e.  NN )  ->  ( D  -  K
)  <  D )
2221adantrr 716 . . . . 5  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  -  K )  <  D
)
2314, 22jca 532 . . . 4  |-  ( ( D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( ( D  -  K )  e.  NN  /\  ( D  -  K )  < 
D ) )
24233adant1 1006 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( ( D  -  K )  e.  NN  /\  ( D  -  K
)  <  D )
)
25 ndvdssub 13710 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  (
( D  -  K
)  e.  NN  /\  ( D  -  K
)  <  D )
)  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  ( D  -  K )
) ) )
2624, 25syld3an3 1264 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  ( D  -  K ) ) ) )
27 zaddcl 10783 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
287, 27sylan2 474 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  K  e.  NN )  ->  ( N  +  K
)  e.  ZZ )
29 dvdssubr 13673 . . . . . . . 8  |-  ( ( D  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
306, 28, 29syl2an 477 . . . . . . 7  |-  ( ( D  e.  NN  /\  ( N  e.  ZZ  /\  K  e.  NN ) )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
3130an12s 799 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( D  e.  NN  /\  K  e.  NN ) )  ->  ( D  ||  ( N  +  K
)  <->  D  ||  ( ( N  +  K )  -  D ) ) )
32313impb 1184 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  +  K )  <->  D  ||  (
( N  +  K
)  -  D ) ) )
33 zcn 10749 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
34 nncn 10428 . . . . . . 7  |-  ( D  e.  NN  ->  D  e.  CC )
35 nncn 10428 . . . . . . 7  |-  ( K  e.  NN  ->  K  e.  CC )
36 subsub3 9739 . . . . . . 7  |-  ( ( N  e.  CC  /\  D  e.  CC  /\  K  e.  CC )  ->  ( N  -  ( D  -  K ) )  =  ( ( N  +  K )  -  D
) )
3733, 34, 35, 36syl3an 1261 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( N  -  ( D  -  K ) )  =  ( ( N  +  K )  -  D
) )
3837breq2d 4399 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  -  ( D  -  K
) )  <->  D  ||  (
( N  +  K
)  -  D ) ) )
3932, 38bitr4d 256 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( D  ||  ( N  +  K )  <->  D  ||  ( N  -  ( D  -  K ) ) ) )
4039notbid 294 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  K  e.  NN )  ->  ( -.  D  ||  ( N  +  K )  <->  -.  D  ||  ( N  -  ( D  -  K )
) ) )
41403adant3r 1216 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( -.  D  ||  ( N  +  K
)  <->  -.  D  ||  ( N  -  ( D  -  K ) ) ) )
4226, 41sylibrd 234 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  +  K )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   class class class wbr 4387  (class class class)co 6187   CCcc 9378   RRcr 9379   0cc0 9380    + caddc 9383    < clt 9516    - cmin 9693   NNcn 10420   ZZcz 10744    || cdivides 13634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457  ax-pre-sup 9458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-er 7198  df-en 7408  df-dom 7409  df-sdom 7410  df-sup 7789  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-div 10092  df-nn 10421  df-2 10478  df-3 10479  df-n0 10678  df-z 10745  df-uz 10960  df-rp 11090  df-fz 11536  df-seq 11905  df-exp 11964  df-cj 12687  df-re 12688  df-im 12689  df-sqr 12823  df-abs 12824  df-dvds 13635
This theorem is referenced by:  ndvdsp1  13712  ndvdsi  13713
  Copyright terms: Public domain W3C validator