MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Unicode version

Theorem ndmovg 6457
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 6299 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eleq2 2530 . . . . . 6  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  <. A ,  B >.  e.  ( R  X.  S ) ) )
3 opelxp 5038 . . . . . 6  |-  ( <. A ,  B >.  e.  ( R  X.  S
)  <->  ( A  e.  R  /\  B  e.  S ) )
42, 3syl6bb 261 . . . . 5  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  ( A  e.  R  /\  B  e.  S ) ) )
54notbid 294 . . . 4  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  <. A ,  B >.  e.  dom  F  <->  -.  ( A  e.  R  /\  B  e.  S
) ) )
6 ndmfv 5896 . . . 4  |-  ( -. 
<. A ,  B >.  e. 
dom  F  ->  ( F `
 <. A ,  B >. )  =  (/) )
75, 6syl6bir 229 . . 3  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  ( A  e.  R  /\  B  e.  S )  ->  ( F `  <. A ,  B >. )  =  (/) ) )
87imp 429 . 2  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( F `  <. A ,  B >. )  =  (/) )
91, 8syl5eq 2510 1  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   (/)c0 3793   <.cop 4038    X. cxp 5006   dom cdm 5008   ` cfv 5594  (class class class)co 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-xp 5014  df-dm 5018  df-iota 5557  df-fv 5602  df-ov 6299
This theorem is referenced by:  ndmov  6458  curry1val  6892  curry2val  6896  1div0  10229  repsundef  12755  cshnz  12775  mamufacex  19018  mavmulsolcl  19180  mavmul0g  19182  iscau2  21842  1div0apr  25303
  Copyright terms: Public domain W3C validator