MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Unicode version

Theorem ndmovg 6453
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 6298 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eleq2 2540 . . . . . 6  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  <. A ,  B >.  e.  ( R  X.  S ) ) )
3 opelxp 5035 . . . . . 6  |-  ( <. A ,  B >.  e.  ( R  X.  S
)  <->  ( A  e.  R  /\  B  e.  S ) )
42, 3syl6bb 261 . . . . 5  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  ( A  e.  R  /\  B  e.  S ) ) )
54notbid 294 . . . 4  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  <. A ,  B >.  e.  dom  F  <->  -.  ( A  e.  R  /\  B  e.  S
) ) )
6 ndmfv 5896 . . . 4  |-  ( -. 
<. A ,  B >.  e. 
dom  F  ->  ( F `
 <. A ,  B >. )  =  (/) )
75, 6syl6bir 229 . . 3  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  ( A  e.  R  /\  B  e.  S )  ->  ( F `  <. A ,  B >. )  =  (/) ) )
87imp 429 . 2  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( F `  <. A ,  B >. )  =  (/) )
91, 8syl5eq 2520 1  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   (/)c0 3790   <.cop 4039    X. cxp 5003   dom cdm 5005   ` cfv 5594  (class class class)co 6295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-xp 5011  df-dm 5015  df-iota 5557  df-fv 5602  df-ov 6298
This theorem is referenced by:  ndmov  6454  curry1val  6888  curry2val  6892  1div0  10220  repsundef  12723  cshnz  12743  mamufacex  18760  mavmulsolcl  18922  mavmul0g  18924  iscau2  21584  1div0apr  24990
  Copyright terms: Public domain W3C validator