MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmima Structured version   Unicode version

Theorem ndmima 5373
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 5012 . 2  |-  ( B
" { A }
)  =  ran  ( B  |`  { A }
)
2 dmres 5294 . . . . 5  |-  dom  ( B  |`  { A }
)  =  ( { A }  i^i  dom  B )
3 incom 3691 . . . . 5  |-  ( { A }  i^i  dom  B )  =  ( dom 
B  i^i  { A } )
42, 3eqtri 2496 . . . 4  |-  dom  ( B  |`  { A }
)  =  ( dom 
B  i^i  { A } )
5 disjsn 4088 . . . . 5  |-  ( ( dom  B  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  B )
65biimpri 206 . . . 4  |-  ( -.  A  e.  dom  B  ->  ( dom  B  i^i  { A } )  =  (/) )
74, 6syl5eq 2520 . . 3  |-  ( -.  A  e.  dom  B  ->  dom  ( B  |`  { A } )  =  (/) )
8 dm0rn0 5219 . . 3  |-  ( dom  ( B  |`  { A } )  =  (/)  <->  ran  ( B  |`  { A } )  =  (/) )
97, 8sylib 196 . 2  |-  ( -.  A  e.  dom  B  ->  ran  ( B  |`  { A } )  =  (/) )
101, 9syl5eq 2520 1  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1379    e. wcel 1767    i^i cin 3475   (/)c0 3785   {csn 4027   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-cnv 5007  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012
This theorem is referenced by:  funfv  5934  dffv2  5940  fpwwe2lem13  9020
  Copyright terms: Public domain W3C validator