MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconsubb Structured version   Unicode version

Theorem nconsubb 20375
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconsubb.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
nconsubb.3  |-  ( ph  ->  A  C_  X )
nconsubb.4  |-  ( ph  ->  U  e.  J )
nconsubb.5  |-  ( ph  ->  V  e.  J )
nconsubb.6  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
nconsubb.7  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
nconsubb.8  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
nconsubb.9  |-  ( ph  ->  A  C_  ( U  u.  V ) )
Assertion
Ref Expression
nconsubb  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )

Proof of Theorem nconsubb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconsubb.9 . 2  |-  ( ph  ->  A  C_  ( U  u.  V ) )
2 nconsubb.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 nconsubb.3 . . . 4  |-  ( ph  ->  A  C_  X )
4 consuba 20372 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
52, 3, 4syl2anc 665 . . 3  |-  ( ph  ->  ( ( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
6 nconsubb.6 . . . . 5  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
7 nconsubb.7 . . . . 5  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
8 nconsubb.8 . . . . 5  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
96, 7, 83jca 1185 . . . 4  |-  ( ph  ->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
10 nconsubb.4 . . . . 5  |-  ( ph  ->  U  e.  J )
11 nconsubb.5 . . . . 5  |-  ( ph  ->  V  e.  J )
12 ineq1 3595 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  i^i  A )  =  ( U  i^i  A ) )
1312neeq1d 2655 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  i^i  A
)  =/=  (/)  <->  ( U  i^i  A )  =/=  (/) ) )
14 ineq1 3595 . . . . . . . . . 10  |-  ( x  =  U  ->  (
x  i^i  y )  =  ( U  i^i  y ) )
1514ineq1d 3601 . . . . . . . . 9  |-  ( x  =  U  ->  (
( x  i^i  y
)  i^i  A )  =  ( ( U  i^i  y )  i^i 
A ) )
1615eqeq1d 2425 . . . . . . . 8  |-  ( x  =  U  ->  (
( ( x  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  y )  i^i 
A )  =  (/) ) )
1713, 163anbi13d 1337 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) ) ) )
18 uneq1 3551 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  u.  y )  =  ( U  u.  y ) )
1918ineq1d 3601 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  u.  y
)  i^i  A )  =  ( ( U  u.  y )  i^i 
A ) )
2019neeq1d 2655 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  u.  y )  i^i  A
)  =/=  A  <->  ( ( U  u.  y )  i^i  A )  =/=  A
) )
2117, 20imbi12d 321 . . . . . 6  |-  ( x  =  U  ->  (
( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  A )  =  (/) )  ->  (
( x  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  ->  ( ( U  u.  y )  i^i  A )  =/= 
A ) ) )
22 ineq1 3595 . . . . . . . . 9  |-  ( y  =  V  ->  (
y  i^i  A )  =  ( V  i^i  A ) )
2322neeq1d 2655 . . . . . . . 8  |-  ( y  =  V  ->  (
( y  i^i  A
)  =/=  (/)  <->  ( V  i^i  A )  =/=  (/) ) )
24 ineq2 3596 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  i^i  y )  =  ( U  i^i  V
) )
2524ineq1d 3601 . . . . . . . . 9  |-  ( y  =  V  ->  (
( U  i^i  y
)  i^i  A )  =  ( ( U  i^i  V )  i^i 
A ) )
2625eqeq1d 2425 . . . . . . . 8  |-  ( y  =  V  ->  (
( ( U  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
2723, 263anbi23d 1338 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  i^i  A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  (
( U  i^i  V
)  i^i  A )  =  (/) ) ) )
28 dfss1 3605 . . . . . . . . 9  |-  ( A 
C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =  A )
2928necon3bbii 2643 . . . . . . . 8  |-  ( -.  A  C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =/=  A
)
30 uneq2 3552 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  u.  y )  =  ( U  u.  V ) )
3130sseq2d 3430 . . . . . . . . 9  |-  ( y  =  V  ->  ( A  C_  ( U  u.  y )  <->  A  C_  ( U  u.  V )
) )
3231notbid 295 . . . . . . . 8  |-  ( y  =  V  ->  ( -.  A  C_  ( U  u.  y )  <->  -.  A  C_  ( U  u.  V
) ) )
3329, 32syl5bbr 262 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  u.  y )  i^i  A
)  =/=  A  <->  -.  A  C_  ( U  u.  V
) ) )
3427, 33imbi12d 321 . . . . . 6  |-  ( y  =  V  ->  (
( ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) )  ->  (
( U  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3521, 34rspc2v 3129 . . . . 5  |-  ( ( U  e.  J  /\  V  e.  J )  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3610, 11, 35syl2anc 665 . . . 4  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
379, 36mpid 42 . . 3  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  -.  A  C_  ( U  u.  V
) ) )
385, 37sylbid 218 . 2  |-  ( ph  ->  ( ( Jt  A )  e.  Con  ->  -.  A  C_  ( U  u.  V ) ) )
391, 38mt2d 120 1  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2594   A.wral 2709    u. cun 3372    i^i cin 3373    C_ wss 3374   (/)c0 3699   ` cfv 5539  (class class class)co 6244   ↾t crest 15257  TopOnctopon 19855   Conccon 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-pred 5337  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-ov 6247  df-oprab 6248  df-mpt2 6249  df-om 6646  df-1st 6746  df-2nd 6747  df-wrecs 6978  df-recs 7040  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7520  df-fin 7523  df-fi 7873  df-rest 15259  df-topgen 15280  df-top 19858  df-bases 19859  df-topon 19860  df-cld 19971  df-con 20364
This theorem is referenced by:  iunconlem  20379  clscon  20382  reconnlem1  21781  ordtconlem1  28677
  Copyright terms: Public domain W3C validator