MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconsubb Structured version   Unicode version

Theorem nconsubb 20090
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconsubb.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
nconsubb.3  |-  ( ph  ->  A  C_  X )
nconsubb.4  |-  ( ph  ->  U  e.  J )
nconsubb.5  |-  ( ph  ->  V  e.  J )
nconsubb.6  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
nconsubb.7  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
nconsubb.8  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
nconsubb.9  |-  ( ph  ->  A  C_  ( U  u.  V ) )
Assertion
Ref Expression
nconsubb  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )

Proof of Theorem nconsubb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconsubb.9 . 2  |-  ( ph  ->  A  C_  ( U  u.  V ) )
2 nconsubb.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 nconsubb.3 . . . 4  |-  ( ph  ->  A  C_  X )
4 consuba 20087 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
52, 3, 4syl2anc 659 . . 3  |-  ( ph  ->  ( ( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
6 nconsubb.6 . . . . 5  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
7 nconsubb.7 . . . . 5  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
8 nconsubb.8 . . . . 5  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
96, 7, 83jca 1174 . . . 4  |-  ( ph  ->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
10 nconsubb.4 . . . . 5  |-  ( ph  ->  U  e.  J )
11 nconsubb.5 . . . . 5  |-  ( ph  ->  V  e.  J )
12 ineq1 3679 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  i^i  A )  =  ( U  i^i  A ) )
1312neeq1d 2731 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  i^i  A
)  =/=  (/)  <->  ( U  i^i  A )  =/=  (/) ) )
14 ineq1 3679 . . . . . . . . . 10  |-  ( x  =  U  ->  (
x  i^i  y )  =  ( U  i^i  y ) )
1514ineq1d 3685 . . . . . . . . 9  |-  ( x  =  U  ->  (
( x  i^i  y
)  i^i  A )  =  ( ( U  i^i  y )  i^i 
A ) )
1615eqeq1d 2456 . . . . . . . 8  |-  ( x  =  U  ->  (
( ( x  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  y )  i^i 
A )  =  (/) ) )
1713, 163anbi13d 1299 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) ) ) )
18 uneq1 3637 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  u.  y )  =  ( U  u.  y ) )
1918ineq1d 3685 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  u.  y
)  i^i  A )  =  ( ( U  u.  y )  i^i 
A ) )
2019neeq1d 2731 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  u.  y )  i^i  A
)  =/=  A  <->  ( ( U  u.  y )  i^i  A )  =/=  A
) )
2117, 20imbi12d 318 . . . . . 6  |-  ( x  =  U  ->  (
( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  A )  =  (/) )  ->  (
( x  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  ->  ( ( U  u.  y )  i^i  A )  =/= 
A ) ) )
22 ineq1 3679 . . . . . . . . 9  |-  ( y  =  V  ->  (
y  i^i  A )  =  ( V  i^i  A ) )
2322neeq1d 2731 . . . . . . . 8  |-  ( y  =  V  ->  (
( y  i^i  A
)  =/=  (/)  <->  ( V  i^i  A )  =/=  (/) ) )
24 ineq2 3680 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  i^i  y )  =  ( U  i^i  V
) )
2524ineq1d 3685 . . . . . . . . 9  |-  ( y  =  V  ->  (
( U  i^i  y
)  i^i  A )  =  ( ( U  i^i  V )  i^i 
A ) )
2625eqeq1d 2456 . . . . . . . 8  |-  ( y  =  V  ->  (
( ( U  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
2723, 263anbi23d 1300 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  i^i  A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  (
( U  i^i  V
)  i^i  A )  =  (/) ) ) )
28 dfss1 3689 . . . . . . . . 9  |-  ( A 
C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =  A )
2928necon3bbii 2715 . . . . . . . 8  |-  ( -.  A  C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =/=  A
)
30 uneq2 3638 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  u.  y )  =  ( U  u.  V ) )
3130sseq2d 3517 . . . . . . . . 9  |-  ( y  =  V  ->  ( A  C_  ( U  u.  y )  <->  A  C_  ( U  u.  V )
) )
3231notbid 292 . . . . . . . 8  |-  ( y  =  V  ->  ( -.  A  C_  ( U  u.  y )  <->  -.  A  C_  ( U  u.  V
) ) )
3329, 32syl5bbr 259 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  u.  y )  i^i  A
)  =/=  A  <->  -.  A  C_  ( U  u.  V
) ) )
3427, 33imbi12d 318 . . . . . 6  |-  ( y  =  V  ->  (
( ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) )  ->  (
( U  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3521, 34rspc2v 3216 . . . . 5  |-  ( ( U  e.  J  /\  V  e.  J )  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3610, 11, 35syl2anc 659 . . . 4  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
379, 36mpid 41 . . 3  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  -.  A  C_  ( U  u.  V
) ) )
385, 37sylbid 215 . 2  |-  ( ph  ->  ( ( Jt  A )  e.  Con  ->  -.  A  C_  ( U  u.  V ) ) )
391, 38mt2d 117 1  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ w3a 971    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3783   ` cfv 5570  (class class class)co 6270   ↾t crest 14910  TopOnctopon 19562   Conccon 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-oadd 7126  df-er 7303  df-en 7510  df-fin 7513  df-fi 7863  df-rest 14912  df-topgen 14933  df-top 19566  df-bases 19568  df-topon 19569  df-cld 19687  df-con 20079
This theorem is referenced by:  iunconlem  20094  clscon  20097  reconnlem1  21497  ordtconlem1  28141
  Copyright terms: Public domain W3C validator