MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbn2 Structured version   Visualization version   Unicode version

Theorem nbn2 351
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.)
Assertion
Ref Expression
nbn2  |-  ( -. 
ph  ->  ( -.  ps  <->  (
ph 
<->  ps ) ) )

Proof of Theorem nbn2
StepHypRef Expression
1 pm5.501 347 . 2  |-  ( -. 
ph  ->  ( -.  ps  <->  ( -.  ph  <->  -.  ps )
) )
2 notbi 301 . 2  |-  ( (
ph 
<->  ps )  <->  ( -.  ph  <->  -. 
ps ) )
31, 2syl6bbr 271 1  |-  ( -. 
ph  ->  ( -.  ps  <->  (
ph 
<->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190
This theorem is referenced by:  bibif  352  pm5.21im  355  pm5.18  362  biass  365  sadadd2lem2  14473  isclo  20152
  Copyright terms: Public domain W3C validator