MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natpropd Structured version   Unicode version

Theorem natpropd 14905
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fucpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fucpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fucpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fucpropd.a  |-  ( ph  ->  A  e.  Cat )
fucpropd.b  |-  ( ph  ->  B  e.  Cat )
fucpropd.c  |-  ( ph  ->  C  e.  Cat )
fucpropd.d  |-  ( ph  ->  D  e.  Cat )
Assertion
Ref Expression
natpropd  |-  ( ph  ->  ( A Nat  C )  =  ( B Nat  D
) )

Proof of Theorem natpropd
Dummy variables  a 
f  g  h  r  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . 4  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
2 fucpropd.2 . . . 4  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
3 fucpropd.3 . . . 4  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
4 fucpropd.4 . . . 4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
5 fucpropd.a . . . 4  |-  ( ph  ->  A  e.  Cat )
6 fucpropd.b . . . 4  |-  ( ph  ->  B  e.  Cat )
7 fucpropd.c . . . 4  |-  ( ph  ->  C  e.  Cat )
8 fucpropd.d . . . 4  |-  ( ph  ->  D  e.  Cat )
91, 2, 3, 4, 5, 6, 7, 8funcpropd 14829 . . 3  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
109adantr 465 . . 3  |-  ( (
ph  /\  f  e.  ( A  Func  C ) )  ->  ( A  Func  C )  =  ( B  Func  D )
)
11 nfv 1673 . . . 4  |-  F/ r ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )
12 nfcsb1v 3323 . . . . 5  |-  F/_ r [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }
1312a1i 11 . . . 4  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  F/_ r [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
14 fvex 5720 . . . . 5  |-  ( 1st `  f )  e.  _V
1514a1i 11 . . . 4  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  ( 1st `  f )  e. 
_V )
16 nfv 1673 . . . . . 6  |-  F/ s ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )
17 nfcsb1v 3323 . . . . . . 7  |-  F/_ s [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }
1817a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  F/_ s [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
19 fvex 5720 . . . . . . 7  |-  ( 1st `  g )  e.  _V
2019a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  -> 
( 1st `  g
)  e.  _V )
21 eqid 2443 . . . . . . . . . . 11  |-  ( Base `  C )  =  (
Base `  C )
22 eqid 2443 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
23 eqid 2443 . . . . . . . . . . 11  |-  ( Hom  `  D )  =  ( Hom  `  D )
243ad4antr 731 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
25 eqid 2443 . . . . . . . . . . . . 13  |-  ( Base `  A )  =  (
Base `  A )
26 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r  =  ( 1st `  f
) )
27 relfunc 14791 . . . . . . . . . . . . . . 15  |-  Rel  ( A  Func  C )
28 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )
2928simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  f  e.  ( A  Func  C
) )
30 1st2ndbr 6642 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  f  e.  ( A  Func  C
) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
3127, 29, 30sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
3226, 31eqbrtrd 4331 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r
( A  Func  C
) ( 2nd `  f
) )
3325, 21, 32funcf1 14795 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r : ( Base `  A
) --> ( Base `  C
) )
3433ffvelrnda 5862 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
r `  x )  e.  ( Base `  C
) )
35 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s  =  ( 1st `  g
) )
3628simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  g  e.  ( A  Func  C
) )
37 1st2ndbr 6642 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  g  e.  ( A  Func  C
) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
3827, 36, 37sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
3935, 38eqbrtrd 4331 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s
( A  Func  C
) ( 2nd `  g
) )
4025, 21, 39funcf1 14795 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s : ( Base `  A
) --> ( Base `  C
) )
4140ffvelrnda 5862 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
s `  x )  e.  ( Base `  C
) )
4221, 22, 23, 24, 34, 41homfeqval 14655 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
( r `  x
) ( Hom  `  C
) ( s `  x ) )  =  ( ( r `  x ) ( Hom  `  D ) ( s `
 x ) ) )
4342ixpeq2dva 7297 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
441homfeqbas 14654 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
4544ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( Base `  A )  =  ( Base `  B
) )
4645ixpeq1d 7294 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  D )
( s `  x
) )  =  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
4743, 46eqtrd 2475 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
48 fveq2 5710 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
r `  x )  =  ( r `  z ) )
49 fveq2 5710 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
s `  x )  =  ( s `  z ) )
5048, 49oveq12d 6128 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( r `  x
) ( Hom  `  C
) ( s `  x ) )  =  ( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )
5150cbvixpv 7300 . . . . . . . . . 10  |-  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ z  e.  ( Base `  A ) ( ( r `  z ) ( Hom  `  C
) ( s `  z ) )
5251eleq2i 2507 . . . . . . . . 9  |-  ( a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  <-> 
a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )
5345adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  ->  ( Base `  A )  =  (
Base `  B )
)
5453adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  ( Base `  A )  =  ( Base `  B
) )
55 eqid 2443 . . . . . . . . . . . . 13  |-  ( Hom  `  A )  =  ( Hom  `  A )
56 eqid 2443 . . . . . . . . . . . . 13  |-  ( Hom  `  B )  =  ( Hom  `  B )
571ad6antr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( Hom f  `  A )  =  ( Hom f  `  B ) )
58 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  ->  x  e.  ( Base `  A ) )
59 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
y  e.  ( Base `  A ) )
6025, 55, 56, 57, 58, 59homfeqval 14655 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( Hom  `  A ) y )  =  ( x ( Hom  `  B )
y ) )
61 eqid 2443 . . . . . . . . . . . . . 14  |-  (comp `  C )  =  (comp `  C )
62 eqid 2443 . . . . . . . . . . . . . 14  |-  (comp `  D )  =  (comp `  D )
633ad7antr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( Hom f  `  C
)  =  ( Hom f  `  D ) )
644ad7antr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  (compf `  C )  =  (compf `  D ) )
6534adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
r `  x )  e.  ( Base `  C
) )
6665ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( r `  x )  e.  (
Base `  C )
)
6733ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  r : ( Base `  A
) --> ( Base `  C
) )
6867ffvelrnda 5862 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( r `  y
)  e.  ( Base `  C ) )
6968adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( r `  y )  e.  (
Base `  C )
)
7040ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  s : ( Base `  A
) --> ( Base `  C
) )
7170ffvelrnda 5862 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( s `  y
)  e.  ( Base `  C ) )
7271adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( s `  y )  e.  (
Base `  C )
)
7332ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
r ( A  Func  C ) ( 2nd `  f
) )
7425, 55, 22, 73, 58, 59funcf2 14797 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( 2nd `  f ) y ) : ( x ( Hom  `  A )
y ) --> ( ( r `  x ) ( Hom  `  C
) ( r `  y ) ) )
7574ffvelrnda 5862 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
x ( 2nd `  f
) y ) `  h )  e.  ( ( r `  x
) ( Hom  `  C
) ( r `  y ) ) )
76 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )
77 fveq2 5710 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
r `  z )  =  ( r `  y ) )
78 fveq2 5710 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
s `  z )  =  ( s `  y ) )
7977, 78oveq12d 6128 . . . . . . . . . . . . . . . . 17  |-  ( z  =  y  ->  (
( r `  z
) ( Hom  `  C
) ( s `  z ) )  =  ( ( r `  y ) ( Hom  `  C ) ( s `
 y ) ) )
8079fvixp 7287 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) )  /\  y  e.  ( Base `  A
) )  ->  (
a `  y )  e.  ( ( r `  y ) ( Hom  `  C ) ( s `
 y ) ) )
8176, 80sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( a `  y
)  e.  ( ( r `  y ) ( Hom  `  C
) ( s `  y ) ) )
8281adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( a `  y )  e.  ( ( r `  y
) ( Hom  `  C
) ( s `  y ) ) )
8321, 22, 61, 62, 63, 64, 66, 69, 72, 75, 82comfeqval 14666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
a `  y )
( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) ) )
8441adantlr 714 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
s `  x )  e.  ( Base `  C
) )
8584ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( s `  x )  e.  (
Base `  C )
)
86 fveq2 5710 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
r `  z )  =  ( r `  x ) )
87 fveq2 5710 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
s `  z )  =  ( s `  x ) )
8886, 87oveq12d 6128 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( r `  z
) ( Hom  `  C
) ( s `  z ) )  =  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
8988fvixp 7287 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) )  /\  x  e.  ( Base `  A
) )  ->  (
a `  x )  e.  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
9089adantll 713 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
a `  x )  e.  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
9190ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( a `  x )  e.  ( ( r `  x
) ( Hom  `  C
) ( s `  x ) ) )
9239ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
s ( A  Func  C ) ( 2nd `  g
) )
9325, 55, 22, 92, 58, 59funcf2 14797 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( 2nd `  g ) y ) : ( x ( Hom  `  A )
y ) --> ( ( s `  x ) ( Hom  `  C
) ( s `  y ) ) )
9493ffvelrnda 5862 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
x ( 2nd `  g
) y ) `  h )  e.  ( ( s `  x
) ( Hom  `  C
) ( s `  y ) ) )
9521, 22, 61, 62, 63, 64, 66, 85, 72, 91, 94comfeqval 14666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
( x ( 2nd `  g ) y ) `
 h ) (
<. ( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) )
9683, 95eqeq12d 2457 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
( a `  y
) ( <. (
r `  x ) ,  ( r `  y ) >. (comp `  C ) ( s `
 y ) ) ( ( x ( 2nd `  f ) y ) `  h
) )  =  ( ( ( x ( 2nd `  g ) y ) `  h
) ( <. (
r `  x ) ,  ( s `  x ) >. (comp `  C ) ( s `
 y ) ) ( a `  x
) )  <->  ( (
a `  y )
( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9760, 96raleqbidva 2952 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. h  e.  (
x ( Hom  `  B
) y ) ( ( a `  y
) ( <. (
r `  x ) ,  ( r `  y ) >. (comp `  D ) ( s `
 y ) ) ( ( x ( 2nd `  f ) y ) `  h
) )  =  ( ( ( x ( 2nd `  g ) y ) `  h
) ( <. (
r `  x ) ,  ( s `  x ) >. (comp `  D ) ( s `
 y ) ) ( a `  x
) ) ) )
9854, 97raleqbidva 2952 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  ( A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9953, 98raleqbidva 2952 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
10052, 99sylan2b 475 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
10147, 100rabeqbidva 2987 . . . . . . 7  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  |  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
102 csbeq1a 3316 . . . . . . . 8  |-  ( s  =  ( 1st `  g
)  ->  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
103102adantl 466 . . . . . . 7  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
104101, 103eqtrd 2475 . . . . . 6  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  |  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
10516, 18, 20, 104csbiedf 3328 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
106 csbeq1a 3316 . . . . . 6  |-  ( r  =  ( 1st `  f
)  ->  [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
107106adantl 466 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
108105, 107eqtrd 2475 . . . 4  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
10911, 13, 15, 108csbiedf 3328 . . 3  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
1109, 10, 109mpt2eq123dva 6166 . 2  |-  ( ph  ->  ( f  e.  ( A  Func  C ) ,  g  e.  ( A  Func  C )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x
) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  ( B 
Func  D ) ,  g  e.  ( B  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } ) )
111 eqid 2443 . . 3  |-  ( A Nat 
C )  =  ( A Nat  C )
112111, 25, 55, 22, 61natfval 14875 . 2  |-  ( A Nat 
C )  =  ( f  e.  ( A 
Func  C ) ,  g  e.  ( A  Func  C )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) } )
113 eqid 2443 . . 3  |-  ( B Nat 
D )  =  ( B Nat  D )
114 eqid 2443 . . 3  |-  ( Base `  B )  =  (
Base `  B )
115113, 114, 56, 23, 62natfval 14875 . 2  |-  ( B Nat 
D )  =  ( f  e.  ( B 
Func  D ) ,  g  e.  ( B  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
116110, 112, 1153eqtr4g 2500 1  |-  ( ph  ->  ( A Nat  C )  =  ( B Nat  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   F/_wnfc 2575   A.wral 2734   {crab 2738   _Vcvv 2991   [_csb 3307   <.cop 3902   class class class wbr 4311   Rel wrel 4864   -->wf 5433   ` cfv 5437  (class class class)co 6110    e. cmpt2 6112   1stc1st 6594   2ndc2nd 6595   X_cixp 7282   Basecbs 14193   Hom chom 14268  compcco 14269   Catccat 14621   Hom f chomf 14623  compfccomf 14624    Func cfunc 14783   Nat cnat 14870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-map 7235  df-ixp 7283  df-cat 14625  df-cid 14626  df-homf 14627  df-comf 14628  df-func 14787  df-nat 14872
This theorem is referenced by:  fucpropd  14906
  Copyright terms: Public domain W3C validator