MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nati Structured version   Unicode version

Theorem nati 14983
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1  |-  N  =  ( C Nat  D )
natixp.2  |-  ( ph  ->  A  e.  ( <. F ,  G >. N
<. K ,  L >. ) )
natixp.b  |-  B  =  ( Base `  C
)
nati.h  |-  H  =  ( Hom  `  C
)
nati.o  |-  .x.  =  (comp `  D )
nati.x  |-  ( ph  ->  X  e.  B )
nati.y  |-  ( ph  ->  Y  e.  B )
nati.r  |-  ( ph  ->  R  e.  ( X H Y ) )
Assertion
Ref Expression
nati  |-  ( ph  ->  ( ( A `  Y ) ( <.
( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) )

Proof of Theorem nati
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . . 4  |-  ( ph  ->  A  e.  ( <. F ,  G >. N
<. K ,  L >. ) )
2 natrcl.1 . . . . 5  |-  N  =  ( C Nat  D )
3 natixp.b . . . . 5  |-  B  =  ( Base `  C
)
4 nati.h . . . . 5  |-  H  =  ( Hom  `  C
)
5 eqid 2454 . . . . 5  |-  ( Hom  `  D )  =  ( Hom  `  D )
6 nati.o . . . . 5  |-  .x.  =  (comp `  D )
72natrcl 14978 . . . . . . . 8  |-  ( A  e.  ( <. F ,  G >. N <. K ,  L >. )  ->  ( <. F ,  G >.  e.  ( C  Func  D
)  /\  <. K ,  L >.  e.  ( C 
Func  D ) ) )
81, 7syl 16 . . . . . . 7  |-  ( ph  ->  ( <. F ,  G >.  e.  ( C  Func  D )  /\  <. K ,  L >.  e.  ( C 
Func  D ) ) )
98simpld 459 . . . . . 6  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
10 df-br 4400 . . . . . 6  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
119, 10sylibr 212 . . . . 5  |-  ( ph  ->  F ( C  Func  D ) G )
128simprd 463 . . . . . 6  |-  ( ph  -> 
<. K ,  L >.  e.  ( C  Func  D
) )
13 df-br 4400 . . . . . 6  |-  ( K ( C  Func  D
) L  <->  <. K ,  L >.  e.  ( C 
Func  D ) )
1412, 13sylibr 212 . . . . 5  |-  ( ph  ->  K ( C  Func  D ) L )
152, 3, 4, 5, 6, 11, 14isnat 14975 . . . 4  |-  ( ph  ->  ( A  e.  (
<. F ,  G >. N
<. K ,  L >. )  <-> 
( A  e.  X_ x  e.  B  (
( F `  x
) ( Hom  `  D
) ( K `  x ) )  /\  A. x  e.  B  A. y  e.  B  A. f  e.  ( x H y ) ( ( A `  y
) ( <. ( F `  x ) ,  ( F `  y ) >.  .x.  ( K `  y )
) ( ( x G y ) `  f ) )  =  ( ( ( x L y ) `  f ) ( <.
( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) ) ) ) )
161, 15mpbid 210 . . 3  |-  ( ph  ->  ( A  e.  X_ x  e.  B  (
( F `  x
) ( Hom  `  D
) ( K `  x ) )  /\  A. x  e.  B  A. y  e.  B  A. f  e.  ( x H y ) ( ( A `  y
) ( <. ( F `  x ) ,  ( F `  y ) >.  .x.  ( K `  y )
) ( ( x G y ) `  f ) )  =  ( ( ( x L y ) `  f ) ( <.
( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) ) ) )
1716simprd 463 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. f  e.  (
x H y ) ( ( A `  y ) ( <.
( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) ) ( ( x G y ) `
 f ) )  =  ( ( ( x L y ) `
 f ) (
<. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) ) )
18 nati.x . . 3  |-  ( ph  ->  X  e.  B )
19 nati.y . . . . 5  |-  ( ph  ->  Y  e.  B )
2019adantr 465 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
21 nati.r . . . . . . 7  |-  ( ph  ->  R  e.  ( X H Y ) )
2221ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  R  e.  ( X H Y ) )
23 simplr 754 . . . . . . 7  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  x  =  X )
24 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  y  =  Y )
2523, 24oveq12d 6217 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  (
x H y )  =  ( X H Y ) )
2622, 25eleqtrrd 2545 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  R  e.  ( x H y ) )
27 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  x  =  X )
2827fveq2d 5802 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( F `  x )  =  ( F `  X ) )
29 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  y  =  Y )
3029fveq2d 5802 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( F `  y )  =  ( F `  Y ) )
3128, 30opeq12d 4174 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  <. ( F `  x ) ,  ( F `  y ) >.  =  <. ( F `  X ) ,  ( F `  Y ) >. )
3229fveq2d 5802 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( K `  y )  =  ( K `  Y ) )
3331, 32oveq12d 6217 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( <. ( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) )  =  (
<. ( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) )
3429fveq2d 5802 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( A `  y )  =  ( A `  Y ) )
3527, 29oveq12d 6217 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
x G y )  =  ( X G Y ) )
36 simpr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  f  =  R )
3735, 36fveq12d 5804 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
( x G y ) `  f )  =  ( ( X G Y ) `  R ) )
3833, 34, 37oveq123d 6220 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
( A `  y
) ( <. ( F `  x ) ,  ( F `  y ) >.  .x.  ( K `  y )
) ( ( x G y ) `  f ) )  =  ( ( A `  Y ) ( <.
( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) ) )
3927fveq2d 5802 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( K `  x )  =  ( K `  X ) )
4028, 39opeq12d 4174 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  <. ( F `  x ) ,  ( K `  x ) >.  =  <. ( F `  X ) ,  ( K `  X ) >. )
4140, 32oveq12d 6217 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( <. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) )  =  (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) )
4227, 29oveq12d 6217 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
x L y )  =  ( X L Y ) )
4342, 36fveq12d 5804 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
( x L y ) `  f )  =  ( ( X L Y ) `  R ) )
4427fveq2d 5802 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  ( A `  x )  =  ( A `  X ) )
4541, 43, 44oveq123d 6220 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
( ( x L y ) `  f
) ( <. ( F `  x ) ,  ( K `  x ) >.  .x.  ( K `  y )
) ( A `  x ) )  =  ( ( ( X L Y ) `  R ) ( <.
( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) )
4638, 45eqeq12d 2476 . . . . 5  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  f  =  R )  ->  (
( ( A `  y ) ( <.
( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) ) ( ( x G y ) `
 f ) )  =  ( ( ( x L y ) `
 f ) (
<. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) )  <-> 
( ( A `  Y ) ( <.
( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) ) )
4726, 46rspcdv 3180 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. f  e.  (
x H y ) ( ( A `  y ) ( <.
( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) ) ( ( x G y ) `
 f ) )  =  ( ( ( x L y ) `
 f ) (
<. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) )  ->  ( ( A `
 Y ) (
<. ( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) ) )
4820, 47rspcimdv 3178 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. f  e.  (
x H y ) ( ( A `  y ) ( <.
( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) ) ( ( x G y ) `
 f ) )  =  ( ( ( x L y ) `
 f ) (
<. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) )  ->  ( ( A `
 Y ) (
<. ( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) ) )
4918, 48rspcimdv 3178 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  A. f  e.  ( x H y ) ( ( A `
 y ) (
<. ( F `  x
) ,  ( F `
 y ) >.  .x.  ( K `  y
) ) ( ( x G y ) `
 f ) )  =  ( ( ( x L y ) `
 f ) (
<. ( F `  x
) ,  ( K `
 x ) >.  .x.  ( K `  y
) ) ( A `
 x ) )  ->  ( ( A `
 Y ) (
<. ( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) ) )
5017, 49mpd 15 1  |-  ( ph  ->  ( ( A `  Y ) ( <.
( F `  X
) ,  ( F `
 Y ) >.  .x.  ( K `  Y
) ) ( ( X G Y ) `
 R ) )  =  ( ( ( X L Y ) `
 R ) (
<. ( F `  X
) ,  ( K `
 X ) >.  .x.  ( K `  Y
) ) ( A `
 X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   <.cop 3990   class class class wbr 4399   ` cfv 5525  (class class class)co 6199   X_cixp 7372   Basecbs 14291   Hom chom 14367  compcco 14368    Func cfunc 14882   Nat cnat 14969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-ixp 7373  df-func 14886  df-nat 14971
This theorem is referenced by:  fuccocl  14992  invfuc  15002  evlfcllem  15149  yonedalem3b  15207  yonedainv  15209
  Copyright terms: Public domain W3C validator