MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Structured version   Unicode version

Theorem natfval 15361
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1  |-  N  =  ( C Nat  D )
natfval.b  |-  B  =  ( Base `  C
)
natfval.h  |-  H  =  ( Hom  `  C
)
natfval.j  |-  J  =  ( Hom  `  D
)
natfval.o  |-  .x.  =  (comp `  D )
Assertion
Ref Expression
natfval  |-  N  =  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
Distinct variable groups:    f, a,
g, h, r, s, x, y    B, a, f, g, r, s, x, y    C, a, f, g, h, r, s, x, y    J, a, f, g, r, s    H, a, f, g, h, r, s    .x. , a,
f, g, r, s    D, a, f, g, h, r, s, x, y
Allowed substitution hints:    B( h)    .x. ( x, y, h)    H( x, y)    J( x, y, h)    N( x, y, f, g, h, s, r, a)

Proof of Theorem natfval
Dummy variables  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2  |-  N  =  ( C Nat  D )
2 oveq12 6305 . . . . 5  |-  ( ( t  =  C  /\  u  =  D )  ->  ( t  Func  u
)  =  ( C 
Func  D ) )
3 simpl 457 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  t  =  C )
43fveq2d 5876 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Base `  t
)  =  ( Base `  C ) )
5 natfval.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
64, 5syl6eqr 2516 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Base `  t
)  =  B )
76ixpeq1d 7500 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  (
Base `  t )
( ( r `  x ) ( Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) ( Hom  `  u ) ( s `
 x ) ) )
8 simpr 461 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  u  =  D )
98fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Hom  `  u
)  =  ( Hom  `  D ) )
10 natfval.j . . . . . . . . . . . 12  |-  J  =  ( Hom  `  D
)
119, 10syl6eqr 2516 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Hom  `  u
)  =  J )
1211oveqd 6313 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( r `  x ) ( Hom  `  u ) ( s `
 x ) )  =  ( ( r `
 x ) J ( s `  x
) ) )
1312ixpeq2dv 7504 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  B  ( ( r `  x ) ( Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) ) )
147, 13eqtrd 2498 . . . . . . . 8  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  (
Base `  t )
( ( r `  x ) ( Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) ) )
153fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Hom  `  t
)  =  ( Hom  `  C ) )
16 natfval.h . . . . . . . . . . . . 13  |-  H  =  ( Hom  `  C
)
1715, 16syl6eqr 2516 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Hom  `  t
)  =  H )
1817oveqd 6313 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( x ( Hom  `  t ) y )  =  ( x H y ) )
198fveq2d 5876 . . . . . . . . . . . . . . 15  |-  ( ( t  =  C  /\  u  =  D )  ->  (comp `  u )  =  (comp `  D )
)
20 natfval.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  D )
2119, 20syl6eqr 2516 . . . . . . . . . . . . . 14  |-  ( ( t  =  C  /\  u  =  D )  ->  (comp `  u )  =  .x.  )
2221oveqd 6313 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) )  =  (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) )
2322oveqd 6313 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) ) )
2421oveqd 6313 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  ( <. ( r `  x ) ,  ( s `  x )
>. (comp `  u )
( s `  y
) )  =  (
<. ( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) )
2524oveqd 6313 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) )
2623, 25eqeq12d 2479 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <-> 
( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
2718, 26raleqbidv 3068 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. h  e.  ( x ( Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
286, 27raleqbidv 3068 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. y  e.  ( Base `  t
) A. h  e.  ( x ( Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. y  e.  B  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
296, 28raleqbidv 3068 . . . . . . . 8  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. x  e.  ( Base `  t
) A. y  e.  ( Base `  t
) A. h  e.  ( x ( Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  B  A. y  e.  B  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
3014, 29rabeqbidv 3104 . . . . . . 7  |-  ( ( t  =  C  /\  u  =  D )  ->  { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
3130csbeq2dv 3843 . . . . . 6  |-  ( ( t  =  C  /\  u  =  D )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
3231csbeq2dv 3843 . . . . 5  |-  ( ( t  =  C  /\  u  =  D )  ->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
332, 2, 32mpt2eq123dv 6358 . . . 4  |-  ( ( t  =  C  /\  u  =  D )  ->  ( f  e.  ( t  Func  u ) ,  g  e.  (
t  Func  u )  |-> 
[_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  ( C 
Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
34 df-nat 15358 . . . 4  |- Nat  =  ( t  e.  Cat ,  u  e.  Cat  |->  ( f  e.  ( t  Func  u ) ,  g  e.  ( t  Func  u
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) ( Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
( Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } ) )
35 ovex 6324 . . . . 5  |-  ( C 
Func  D )  e.  _V
3635, 35mpt2ex 6876 . . . 4  |-  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  e.  _V
3733, 34, 36ovmpt2a 6432 . . 3  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  ( f  e.  ( C  Func  D
) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
3834mpt2ndm0 6515 . . . 4  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  (/) )
39 funcrcl 15278 . . . . . . . 8  |-  ( f  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
4039con3i 135 . . . . . . 7  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  -.  f  e.  ( C  Func  D )
)
4140eq0rdv 3829 . . . . . 6  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C  Func  D
)  =  (/) )
42 mpt2eq12 6356 . . . . . 6  |-  ( ( ( C  Func  D
)  =  (/)  /\  ( C  Func  D )  =  (/) )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
4341, 41, 42syl2anc 661 . . . . 5  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
44 mpt20 6366 . . . . 5  |-  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  (/)
4543, 44syl6eq 2514 . . . 4  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  (/) )
4638, 45eqtr4d 2501 . . 3  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  ( f  e.  ( C  Func  D
) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
4737, 46pm2.61i 164 . 2  |-  ( C Nat 
D )  =  ( f  e.  ( C 
Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
481, 47eqtri 2486 1  |-  N  =  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   [_csb 3430   (/)c0 3793   <.cop 4038   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   1stc1st 6797   2ndc2nd 6798   X_cixp 7488   Basecbs 14643   Hom chom 14722  compcco 14723   Catccat 15080    Func cfunc 15269   Nat cnat 15356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-ixp 7489  df-func 15273  df-nat 15358
This theorem is referenced by:  isnat  15362  natffn  15364  natrcl  15365  wunnat  15371  natpropd  15391
  Copyright terms: Public domain W3C validator