MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nat1st2nd Structured version   Unicode version

Theorem nat1st2nd 14975
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1  |-  N  =  ( C Nat  D )
nat1st2nd.2  |-  ( ph  ->  A  e.  ( F N G ) )
Assertion
Ref Expression
nat1st2nd  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )

Proof of Theorem nat1st2nd
StepHypRef Expression
1 nat1st2nd.2 . 2  |-  ( ph  ->  A  e.  ( F N G ) )
2 relfunc 14886 . . . 4  |-  Rel  ( C  Func  D )
3 natrcl.1 . . . . . . 7  |-  N  =  ( C Nat  D )
43natrcl 14974 . . . . . 6  |-  ( A  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
51, 4syl 16 . . . . 5  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
65simpld 459 . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
7 1st2nd 6725 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
82, 6, 7sylancr 663 . . 3  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
95simprd 463 . . . 4  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
10 1st2nd 6725 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  G  =  <. ( 1st `  G
) ,  ( 2nd `  G ) >. )
112, 9, 10sylancr 663 . . 3  |-  ( ph  ->  G  =  <. ( 1st `  G ) ,  ( 2nd `  G
) >. )
128, 11oveq12d 6213 . 2  |-  ( ph  ->  ( F N G )  =  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
131, 12eleqtrd 2542 1  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   <.cop 3986   Rel wrel 4948   ` cfv 5521  (class class class)co 6195   1stc1st 6680   2ndc2nd 6681    Func cfunc 14878   Nat cnat 14965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-ov 6198  df-oprab 6199  df-mpt2 6200  df-1st 6682  df-2nd 6683  df-ixp 7369  df-func 14882  df-nat 14967
This theorem is referenced by:  fuccocl  14988  fuclid  14990  fucrid  14991  fucass  14992  fucsect  14996  invfuc  14998  fucpropd  15001  evlfcllem  15145  evlfcl  15146  curfuncf  15162  yonedalem3a  15198  yonedalem3b  15203  yonedainv  15205  yonffthlem  15206
  Copyright terms: Public domain W3C validator