MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nancomOLD Structured version   Unicode version

Theorem nancomOLD 1383
Description: Obsolete proof of nancom 1382 as of 7-Mar-2020. (Contributed by Mario Carneiro, 9-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nancomOLD  |-  ( (
ph  -/\  ps )  <->  ( ps  -/\  ph ) )

Proof of Theorem nancomOLD
StepHypRef Expression
1 ancom 451 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
21notbii 297 . 2  |-  ( -.  ( ph  /\  ps ) 
<->  -.  ( ps  /\  ph ) )
3 df-nan 1380 . 2  |-  ( (
ph  -/\  ps )  <->  -.  ( ph  /\  ps ) )
4 df-nan 1380 . 2  |-  ( ( ps  -/\  ph )  <->  -.  ( ps  /\  ph ) )
52, 3, 43bitr4i 280 1  |-  ( (
ph  -/\  ps )  <->  ( ps  -/\  ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    -/\ wnan 1379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-nan 1380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator