Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbiOLD Structured version   Unicode version

Theorem nanbiOLD 1389
 Description: Obsolete proof of nanbi 1388 as of 27-Jun-2020. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 9-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nanbiOLD

Proof of Theorem nanbiOLD
StepHypRef Expression
1 df-or 371 . . 3
2 dfbi3 901 . . 3
3 df-nan 1380 . . . 4
4 nannot 1387 . . . . . 6
5 nannot 1387 . . . . . 6
64, 5anbi12i 701 . . . . 5
76bicomi 205 . . . 4
83, 7imbi12i 327 . . 3
91, 2, 83bitr4i 280 . 2
10 nannan 1384 . 2
119, 10bitr4i 255 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 187   wo 369   wa 370   wnan 1379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-nan 1380 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator