MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanan Structured version   Unicode version

Theorem nanan 1336
Description: Write 'and' in terms of 'nand'. (Contributed by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
nanan  |-  ( (
ph  /\  ps )  <->  -.  ( ph  -/\  ps )
)

Proof of Theorem nanan
StepHypRef Expression
1 df-nan 1335 . 2  |-  ( (
ph  -/\  ps )  <->  -.  ( ph  /\  ps ) )
21con2bii 332 1  |-  ( (
ph  /\  ps )  <->  -.  ( ph  -/\  ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    -/\ wnan 1334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-nan 1335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator