MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naecoms Structured version   Unicode version

Theorem naecoms 2013
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
Hypothesis
Ref Expression
naecoms.1  |-  ( -. 
A. x  x  =  y  ->  ph )
Assertion
Ref Expression
naecoms  |-  ( -. 
A. y  y  =  x  ->  ph )

Proof of Theorem naecoms
StepHypRef Expression
1 aecom 2011 . 2  |-  ( A. x  x  =  y  <->  A. y  y  =  x )
2 naecoms.1 . 2  |-  ( -. 
A. x  x  =  y  ->  ph )
31, 2sylnbir 307 1  |-  ( -. 
A. y  y  =  x  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-12 1794  ax-13 1955
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591
This theorem is referenced by:  sb9  2136  eujustALT  2265  nfcvf2  2642  axpowndlem2  8876  wl-sbcom2d  28555  wl-mo2dnae  28563
  Copyright terms: Public domain W3C validator