![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naecoms | Structured version Visualization version Unicode version |
Description: A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
naecoms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
naecoms |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aecom 2144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | naecoms.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylnbir 309 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-10 1914 ax-12 1932 ax-13 2090 |
This theorem depends on definitions: df-bi 189 df-an 373 df-ex 1663 df-nf 1667 |
This theorem is referenced by: sb9 2254 eujustALT 2301 nfcvf2 2615 axpowndlem2 9020 wl-sbcom2d 31884 wl-mo2df 31892 wl-eudf 31894 |
Copyright terms: Public domain | W3C validator |