Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naecoms-o Structured version   Unicode version

Theorem naecoms-o 31963
Description: A commutation rule for distinct variable specifiers. Version of naecoms 2081 using ax-c11 31924. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nalequcoms-o.1  |-  ( -. 
A. x  x  =  y  ->  ph )
Assertion
Ref Expression
naecoms-o  |-  ( -. 
A. y  y  =  x  ->  ph )

Proof of Theorem naecoms-o
StepHypRef Expression
1 aecom-o 31936 . . 3  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
2 nalequcoms-o.1 . . 3  |-  ( -. 
A. x  x  =  y  ->  ph )
31, 2nsyl4 144 . 2  |-  ( -. 
ph  ->  A. y  y  =  x )
43con1i 131 1  |-  ( -. 
A. y  y  =  x  ->  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-c11 31924
This theorem depends on definitions:  df-bi 187  df-ex 1636
This theorem is referenced by:  ax12inda2ALT  31982
  Copyright terms: Public domain W3C validator