Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Unicode version

Theorem nacsfix 29053
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
Distinct variable groups:    z, C, y    y, F, z    z, X, y    x, y, z, F
Allowed substitution hints:    C( x)    X( x)

Proof of Theorem nacsfix
Dummy variables  a 
b  c  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 5570 . . . . . . . 8  |-  ( F : NN0 --> C  ->  ran  F  C_  C )
213ad2ant2 1010 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  C_  C )
3 elpw2g 4460 . . . . . . . 8  |-  ( C  e.  (NoeACS `  X
)  ->  ( ran  F  e.  ~P C  <->  ran  F  C_  C ) )
433ad2ant1 1009 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( ran  F  e.  ~P C  <->  ran  F  C_  C ) )
52, 4mpbird 232 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  e. 
~P C )
6 elex 2986 . . . . . 6  |-  ( ran 
F  e.  ~P C  ->  ran  F  e.  _V )
75, 6syl 16 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  e. 
_V )
8 ffn 5564 . . . . . . . 8  |-  ( F : NN0 --> C  ->  F  Fn  NN0 )
983ad2ant2 1010 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  F  Fn  NN0 )
10 0nn0 10599 . . . . . . 7  |-  0  e.  NN0
11 fnfvelrn 5845 . . . . . . 7  |-  ( ( F  Fn  NN0  /\  0  e.  NN0 )  -> 
( F `  0
)  e.  ran  F
)
129, 10, 11sylancl 662 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( F `  0 )  e. 
ran  F )
13 ne0i 3648 . . . . . 6  |-  ( ( F `  0 )  e.  ran  F  ->  ran  F  =/=  (/) )
1412, 13syl 16 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  =/=  (/) )
15 nn0re 10593 . . . . . . . . 9  |-  ( a  e.  NN0  ->  a  e.  RR )
1615ad2antrl 727 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  -> 
a  e.  RR )
17 nn0re 10593 . . . . . . . . 9  |-  ( b  e.  NN0  ->  b  e.  RR )
1817ad2antll 728 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  -> 
b  e.  RR )
19 simplrr 760 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  b  e.  NN0 )
20 simpll3 1029 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
21 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  a  e.  NN0 )
22 nn0z 10674 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN0  ->  a  e.  ZZ )
23 nn0z 10674 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN0  ->  b  e.  ZZ )
24 eluz 10879 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( b  e.  (
ZZ>= `  a )  <->  a  <_  b ) )
2522, 23, 24syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  b  e.  NN0 )  -> 
( b  e.  (
ZZ>= `  a )  <->  a  <_  b ) )
2625biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN0  /\  b  e.  NN0 )  /\  a  <_  b )  ->  b  e.  (
ZZ>= `  a ) )
2726adantll 713 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  b  e.  ( ZZ>= `  a )
)
28 incssnn0 29052 . . . . . . . . . . . 12  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  a  e.  NN0  /\  b  e.  ( ZZ>= `  a )
)  ->  ( F `  a )  C_  ( F `  b )
)
2920, 21, 27, 28syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( F `  a )  C_  ( F `  b )
)
30 ssequn1 3531 . . . . . . . . . . 11  |-  ( ( F `  a ) 
C_  ( F `  b )  <->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  b ) )
3129, 30sylib 196 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  b ) )
32 eqimss 3413 . . . . . . . . . 10  |-  ( ( ( F `  a
)  u.  ( F `
 b ) )  =  ( F `  b )  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  b ) )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  b )
)
34 fveq2 5696 . . . . . . . . . . 11  |-  ( c  =  b  ->  ( F `  c )  =  ( F `  b ) )
3534sseq2d 3389 . . . . . . . . . 10  |-  ( c  =  b  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  b )
) )
3635rspcev 3078 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  b ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
3719, 33, 36syl2anc 661 . . . . . . . 8  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
)
38 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  a  e.  NN0 )
39 simpll3 1029 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
40 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  b  e.  NN0 )
41 eluz 10879 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  ( a  e.  (
ZZ>= `  b )  <->  b  <_  a ) )
4223, 22, 41syl2anr 478 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  b  e.  NN0 )  -> 
( a  e.  (
ZZ>= `  b )  <->  b  <_  a ) )
4342biimpar 485 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN0  /\  b  e.  NN0 )  /\  b  <_  a )  ->  a  e.  (
ZZ>= `  b ) )
4443adantll 713 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  a  e.  ( ZZ>= `  b )
)
45 incssnn0 29052 . . . . . . . . . . . 12  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  b  e.  NN0  /\  a  e.  ( ZZ>= `  b )
)  ->  ( F `  b )  C_  ( F `  a )
)
4639, 40, 44, 45syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( F `  b )  C_  ( F `  a )
)
47 ssequn2 3534 . . . . . . . . . . 11  |-  ( ( F `  b ) 
C_  ( F `  a )  <->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  a ) )
4846, 47sylib 196 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  a ) )
49 eqimss 3413 . . . . . . . . . 10  |-  ( ( ( F `  a
)  u.  ( F `
 b ) )  =  ( F `  a )  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  a ) )
5048, 49syl 16 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  a )
)
51 fveq2 5696 . . . . . . . . . . 11  |-  ( c  =  a  ->  ( F `  c )  =  ( F `  a ) )
5251sseq2d 3389 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  a )
) )
5352rspcev 3078 . . . . . . . . 9  |-  ( ( a  e.  NN0  /\  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  a ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
5438, 50, 53syl2anc 661 . . . . . . . 8  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
)
5516, 18, 37, 54lecasei 9485 . . . . . . 7  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
5655ralrimivva 2813 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
57 uneq1 3508 . . . . . . . . . . . 12  |-  ( y  =  ( F `  a )  ->  (
y  u.  z )  =  ( ( F `
 a )  u.  z ) )
5857sseq1d 3388 . . . . . . . . . . 11  |-  ( y  =  ( F `  a )  ->  (
( y  u.  z
)  C_  w  <->  ( ( F `  a )  u.  z )  C_  w
) )
5958rexbidv 2741 . . . . . . . . . 10  |-  ( y  =  ( F `  a )  ->  ( E. w  e.  ran  F ( y  u.  z
)  C_  w  <->  E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
6059ralbidv 2740 . . . . . . . . 9  |-  ( y  =  ( F `  a )  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z
)  C_  w  <->  A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
6160ralrn 5851 . . . . . . . 8  |-  ( F  Fn  NN0  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. z  e. 
ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
62 uneq2 3509 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  b )  ->  (
( F `  a
)  u.  z )  =  ( ( F `
 a )  u.  ( F `  b
) ) )
6362sseq1d 3388 . . . . . . . . . . . 12  |-  ( z  =  ( F `  b )  ->  (
( ( F `  a )  u.  z
)  C_  w  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  w
) )
6463rexbidv 2741 . . . . . . . . . . 11  |-  ( z  =  ( F `  b )  ->  ( E. w  e.  ran  F ( ( F `  a )  u.  z
)  C_  w  <->  E. w  e.  ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w ) )
6564ralrn 5851 . . . . . . . . . 10  |-  ( F  Fn  NN0  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a
)  u.  z ) 
C_  w  <->  A. b  e.  NN0  E. w  e. 
ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w ) )
66 sseq2 3383 . . . . . . . . . . . 12  |-  ( w  =  ( F `  c )  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  w  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
6766rexrn 5850 . . . . . . . . . . 11  |-  ( F  Fn  NN0  ->  ( E. w  e.  ran  F
( ( F `  a )  u.  ( F `  b )
)  C_  w  <->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
6867ralbidv 2740 . . . . . . . . . 10  |-  ( F  Fn  NN0  ->  ( A. b  e.  NN0  E. w  e.  ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w 
<-> 
A. b  e.  NN0  E. c  e.  NN0  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
6965, 68bitrd 253 . . . . . . . . 9  |-  ( F  Fn  NN0  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a
)  u.  z ) 
C_  w  <->  A. b  e.  NN0  E. c  e. 
NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7069ralbidv 2740 . . . . . . . 8  |-  ( F  Fn  NN0  ->  ( A. a  e.  NN0  A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w 
<-> 
A. a  e.  NN0  A. b  e.  NN0  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7161, 70bitrd 253 . . . . . . 7  |-  ( F  Fn  NN0  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
729, 71syl 16 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
7356, 72mpbird 232 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z )  C_  w )
74 isipodrs 15336 . . . . 5  |-  ( (toInc `  ran  F )  e. Dirset  <->  ( ran  F  e.  _V  /\ 
ran  F  =/=  (/)  /\  A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w ) )
757, 14, 73, 74syl3anbrc 1172 . . . 4  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  (toInc `  ran  F )  e. Dirset )
76 isnacs3 29051 . . . . . . 7  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) ) )
7776simprbi 464 . . . . . 6  |-  ( C  e.  (NoeACS `  X
)  ->  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )
78773ad2ant1 1009 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )
79 fveq2 5696 . . . . . . . 8  |-  ( y  =  ran  F  -> 
(toInc `  y )  =  (toInc `  ran  F ) )
8079eleq1d 2509 . . . . . . 7  |-  ( y  =  ran  F  -> 
( (toInc `  y
)  e. Dirset  <->  (toInc `  ran  F )  e. Dirset ) )
81 unieq 4104 . . . . . . . 8  |-  ( y  =  ran  F  ->  U. y  =  U. ran  F )
82 id 22 . . . . . . . 8  |-  ( y  =  ran  F  -> 
y  =  ran  F
)
8381, 82eleq12d 2511 . . . . . . 7  |-  ( y  =  ran  F  -> 
( U. y  e.  y  <->  U. ran  F  e. 
ran  F ) )
8480, 83imbi12d 320 . . . . . 6  |-  ( y  =  ran  F  -> 
( ( (toInc `  y )  e. Dirset  ->  U. y  e.  y )  <-> 
( (toInc `  ran  F )  e. Dirset  ->  U. ran  F  e.  ran  F ) ) )
8584rspcva 3076 . . . . 5  |-  ( ( ran  F  e.  ~P C  /\  A. y  e. 
~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )  ->  ( (toInc ` 
ran  F )  e. Dirset  ->  U. ran  F  e. 
ran  F ) )
865, 78, 85syl2anc 661 . . . 4  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( (toInc ` 
ran  F )  e. Dirset  ->  U. ran  F  e. 
ran  F ) )
8775, 86mpd 15 . . 3  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  U. ran  F  e.  ran  F )
88 fvelrnb 5744 . . . 4  |-  ( F  Fn  NN0  ->  ( U. ran  F  e.  ran  F  <->  E. y  e.  NN0  ( F `  y )  =  U. ran  F ) )
899, 88syl 16 . . 3  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( U. ran  F  e.  ran  F  <->  E. y  e.  NN0  ( F `  y )  =  U. ran  F ) )
9087, 89mpbid 210 . 2  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  ( F `  y )  =  U. ran  F )
91 fvssunirn 5718 . . . . . . 7  |-  ( F `
 z )  C_  U.
ran  F
92 simplrr 760 . . . . . . 7  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  =  U. ran  F )
9391, 92syl5sseqr 3410 . . . . . 6  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  z )  C_  ( F `  y )
)
94 simpll3 1029 . . . . . . 7  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
95 simplrl 759 . . . . . . 7  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  y  e.  NN0 )
96 simpr 461 . . . . . . 7  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  z  e.  ( ZZ>= `  y )
)
97 incssnn0 29052 . . . . . . 7  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  y  e.  NN0  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  C_  ( F `  z )
)
9894, 95, 96, 97syl3anc 1218 . . . . . 6  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  C_  ( F `  z )
)
9993, 98eqssd 3378 . . . . 5  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  z )  =  ( F `  y ) )
10099ralrimiva 2804 . . . 4  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( y  e.  NN0  /\  ( F `  y )  =  U. ran  F ) )  ->  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
101100expr 615 . . 3  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  y  e. 
NN0 )  ->  (
( F `  y
)  =  U. ran  F  ->  A. z  e.  (
ZZ>= `  y ) ( F `  z )  =  ( F `  y ) ) )
102101reximdva 2833 . 2  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( E. y  e.  NN0  ( F `
 y )  = 
U. ran  F  ->  E. y  e.  NN0  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) ) )
10390, 102mpd 15 1  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   _Vcvv 2977    u. cun 3331    C_ wss 3333   (/)c0 3642   ~Pcpw 3865   U.cuni 4096   class class class wbr 4297   ran crn 4846    Fn wfn 5418   -->wf 5419   ` cfv 5423  (class class class)co 6096   RRcr 9286   0cc0 9287   1c1 9288    + caddc 9290    <_ cle 9424   NN0cn0 10584   ZZcz 10651   ZZ>=cuz 10866  Moorecmre 14525  Dirsetcdrs 15102  toInccipo 15326  NoeACScnacs 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-tset 14262  df-ple 14263  df-ocomp 14264  df-mre 14529  df-mrc 14530  df-acs 14532  df-preset 15103  df-drs 15104  df-poset 15121  df-ipo 15327  df-nacs 29044
This theorem is referenced by:  hbt  29491
  Copyright terms: Public domain W3C validator