Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nacsfix Structured version   Unicode version

Theorem nacsfix 35472
Description: An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
nacsfix  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
Distinct variable groups:    z, C, y    y, F, z    z, X, y    x, y, z, F
Allowed substitution hints:    C( x)    X( x)

Proof of Theorem nacsfix
Dummy variables  a 
b  c  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvssunirn 5900 . . . . 5  |-  ( F `
 z )  C_  U.
ran  F
2 simplrr 769 . . . . 5  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  =  U. ran  F )
31, 2syl5sseqr 3513 . . . 4  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  z )  C_  ( F `  y )
)
4 simpll3 1046 . . . . 5  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
5 simplrl 768 . . . . 5  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  y  e.  NN0 )
6 simpr 462 . . . . 5  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  z  e.  ( ZZ>= `  y )
)
7 incssnn0 35471 . . . . 5  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  y  e.  NN0  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  C_  ( F `  z )
)
84, 5, 6, 7syl3anc 1264 . . . 4  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  y )  C_  ( F `  z )
)
93, 8eqssd 3481 . . 3  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
y  e.  NN0  /\  ( F `  y )  =  U. ran  F
) )  /\  z  e.  ( ZZ>= `  y )
)  ->  ( F `  z )  =  ( F `  y ) )
109ralrimiva 2839 . 2  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( y  e.  NN0  /\  ( F `  y )  =  U. ran  F ) )  ->  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
11 frn 5748 . . . . . . . 8  |-  ( F : NN0 --> C  ->  ran  F  C_  C )
12113ad2ant2 1027 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  C_  C )
13 elpw2g 4583 . . . . . . . 8  |-  ( C  e.  (NoeACS `  X
)  ->  ( ran  F  e.  ~P C  <->  ran  F  C_  C ) )
14133ad2ant1 1026 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( ran  F  e.  ~P C  <->  ran  F  C_  C ) )
1512, 14mpbird 235 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  e. 
~P C )
16 elex 3090 . . . . . 6  |-  ( ran 
F  e.  ~P C  ->  ran  F  e.  _V )
1715, 16syl 17 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  e. 
_V )
18 ffn 5742 . . . . . . . 8  |-  ( F : NN0 --> C  ->  F  Fn  NN0 )
19183ad2ant2 1027 . . . . . . 7  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  F  Fn  NN0 )
20 0nn0 10884 . . . . . . 7  |-  0  e.  NN0
21 fnfvelrn 6030 . . . . . . 7  |-  ( ( F  Fn  NN0  /\  0  e.  NN0 )  -> 
( F `  0
)  e.  ran  F
)
2219, 20, 21sylancl 666 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( F `  0 )  e. 
ran  F )
23 ne0i 3767 . . . . . 6  |-  ( ( F `  0 )  e.  ran  F  ->  ran  F  =/=  (/) )
2422, 23syl 17 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ran  F  =/=  (/) )
25 nn0re 10878 . . . . . . . . 9  |-  ( a  e.  NN0  ->  a  e.  RR )
2625ad2antrl 732 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  -> 
a  e.  RR )
27 nn0re 10878 . . . . . . . . 9  |-  ( b  e.  NN0  ->  b  e.  RR )
2827ad2antll 733 . . . . . . . 8  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  -> 
b  e.  RR )
29 simplrr 769 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  b  e.  NN0 )
30 simpll3 1046 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
31 simplrl 768 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  a  e.  NN0 )
32 nn0z 10960 . . . . . . . . . . . . . . 15  |-  ( a  e.  NN0  ->  a  e.  ZZ )
33 nn0z 10960 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN0  ->  b  e.  ZZ )
34 eluz 11172 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( b  e.  (
ZZ>= `  a )  <->  a  <_  b ) )
3532, 33, 34syl2an 479 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  b  e.  NN0 )  -> 
( b  e.  (
ZZ>= `  a )  <->  a  <_  b ) )
3635biimpar 487 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN0  /\  b  e.  NN0 )  /\  a  <_  b )  ->  b  e.  (
ZZ>= `  a ) )
3736adantll 718 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  b  e.  ( ZZ>= `  a )
)
38 incssnn0 35471 . . . . . . . . . . . 12  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  a  e.  NN0  /\  b  e.  ( ZZ>= `  a )
)  ->  ( F `  a )  C_  ( F `  b )
)
3930, 31, 37, 38syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( F `  a )  C_  ( F `  b )
)
40 ssequn1 3636 . . . . . . . . . . 11  |-  ( ( F `  a ) 
C_  ( F `  b )  <->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  b ) )
4139, 40sylib 199 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  b ) )
42 eqimss 3516 . . . . . . . . . 10  |-  ( ( ( F `  a
)  u.  ( F `
 b ) )  =  ( F `  b )  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  b ) )
4341, 42syl 17 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  b )
)
44 fveq2 5877 . . . . . . . . . . 11  |-  ( c  =  b  ->  ( F `  c )  =  ( F `  b ) )
4544sseq2d 3492 . . . . . . . . . 10  |-  ( c  =  b  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  b )
) )
4645rspcev 3182 . . . . . . . . 9  |-  ( ( b  e.  NN0  /\  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  b ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
4729, 43, 46syl2anc 665 . . . . . . . 8  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  a  <_  b
)  ->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
)
48 simplrl 768 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  a  e.  NN0 )
49 simpll3 1046 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  A. x  e.  NN0  ( F `  x )  C_  ( F `  ( x  +  1 ) ) )
50 simplrr 769 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  b  e.  NN0 )
51 eluz 11172 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  ZZ  /\  a  e.  ZZ )  ->  ( a  e.  (
ZZ>= `  b )  <->  b  <_  a ) )
5233, 32, 51syl2anr 480 . . . . . . . . . . . . . 14  |-  ( ( a  e.  NN0  /\  b  e.  NN0 )  -> 
( a  e.  (
ZZ>= `  b )  <->  b  <_  a ) )
5352biimpar 487 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  NN0  /\  b  e.  NN0 )  /\  b  <_  a )  ->  a  e.  (
ZZ>= `  b ) )
5453adantll 718 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  a  e.  ( ZZ>= `  b )
)
55 incssnn0 35471 . . . . . . . . . . . 12  |-  ( ( A. x  e.  NN0  ( F `  x ) 
C_  ( F `  ( x  +  1
) )  /\  b  e.  NN0  /\  a  e.  ( ZZ>= `  b )
)  ->  ( F `  b )  C_  ( F `  a )
)
5649, 50, 54, 55syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( F `  b )  C_  ( F `  a )
)
57 ssequn2 3639 . . . . . . . . . . 11  |-  ( ( F `  b ) 
C_  ( F `  a )  <->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  a ) )
5856, 57sylib 199 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( ( F `  a )  u.  ( F `  b
) )  =  ( F `  a ) )
59 eqimss 3516 . . . . . . . . . 10  |-  ( ( ( F `  a
)  u.  ( F `
 b ) )  =  ( F `  a )  ->  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  a ) )
6058, 59syl 17 . . . . . . . . 9  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  a )
)
61 fveq2 5877 . . . . . . . . . . 11  |-  ( c  =  a  ->  ( F `  c )  =  ( F `  a ) )
6261sseq2d 3492 . . . . . . . . . 10  |-  ( c  =  a  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c )  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  a )
) )
6362rspcev 3182 . . . . . . . . 9  |-  ( ( a  e.  NN0  /\  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  a ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
6448, 60, 63syl2anc 665 . . . . . . . 8  |-  ( ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `  x )  C_  ( F `  (
x  +  1 ) ) )  /\  (
a  e.  NN0  /\  b  e.  NN0 ) )  /\  b  <_  a
)  ->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
)
6526, 28, 47, 64lecasei 9740 . . . . . . 7  |-  ( ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  /\  ( a  e.  NN0  /\  b  e.  NN0 ) )  ->  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
6665ralrimivva 2846 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) )
67 uneq1 3613 . . . . . . . . . . . 12  |-  ( y  =  ( F `  a )  ->  (
y  u.  z )  =  ( ( F `
 a )  u.  z ) )
6867sseq1d 3491 . . . . . . . . . . 11  |-  ( y  =  ( F `  a )  ->  (
( y  u.  z
)  C_  w  <->  ( ( F `  a )  u.  z )  C_  w
) )
6968rexbidv 2939 . . . . . . . . . 10  |-  ( y  =  ( F `  a )  ->  ( E. w  e.  ran  F ( y  u.  z
)  C_  w  <->  E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
7069ralbidv 2864 . . . . . . . . 9  |-  ( y  =  ( F `  a )  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z
)  C_  w  <->  A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
7170ralrn 6036 . . . . . . . 8  |-  ( F  Fn  NN0  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. z  e. 
ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w ) )
72 uneq2 3614 . . . . . . . . . . . . 13  |-  ( z  =  ( F `  b )  ->  (
( F `  a
)  u.  z )  =  ( ( F `
 a )  u.  ( F `  b
) ) )
7372sseq1d 3491 . . . . . . . . . . . 12  |-  ( z  =  ( F `  b )  ->  (
( ( F `  a )  u.  z
)  C_  w  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  w
) )
7473rexbidv 2939 . . . . . . . . . . 11  |-  ( z  =  ( F `  b )  ->  ( E. w  e.  ran  F ( ( F `  a )  u.  z
)  C_  w  <->  E. w  e.  ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w ) )
7574ralrn 6036 . . . . . . . . . 10  |-  ( F  Fn  NN0  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a
)  u.  z ) 
C_  w  <->  A. b  e.  NN0  E. w  e. 
ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w ) )
76 sseq2 3486 . . . . . . . . . . . 12  |-  ( w  =  ( F `  c )  ->  (
( ( F `  a )  u.  ( F `  b )
)  C_  w  <->  ( ( F `  a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7776rexrn 6035 . . . . . . . . . . 11  |-  ( F  Fn  NN0  ->  ( E. w  e.  ran  F
( ( F `  a )  u.  ( F `  b )
)  C_  w  <->  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
7877ralbidv 2864 . . . . . . . . . 10  |-  ( F  Fn  NN0  ->  ( A. b  e.  NN0  E. w  e.  ran  F ( ( F `  a )  u.  ( F `  b ) )  C_  w 
<-> 
A. b  e.  NN0  E. c  e.  NN0  (
( F `  a
)  u.  ( F `
 b ) ) 
C_  ( F `  c ) ) )
7975, 78bitrd 256 . . . . . . . . 9  |-  ( F  Fn  NN0  ->  ( A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a
)  u.  z ) 
C_  w  <->  A. b  e.  NN0  E. c  e. 
NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
8079ralbidv 2864 . . . . . . . 8  |-  ( F  Fn  NN0  ->  ( A. a  e.  NN0  A. z  e.  ran  F E. w  e.  ran  F ( ( F `  a )  u.  z )  C_  w 
<-> 
A. a  e.  NN0  A. b  e.  NN0  E. c  e.  NN0  ( ( F `
 a )  u.  ( F `  b
) )  C_  ( F `  c )
) )
8171, 80bitrd 256 . . . . . . 7  |-  ( F  Fn  NN0  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
8219, 81syl 17 . . . . . 6  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w  <->  A. a  e.  NN0  A. b  e. 
NN0  E. c  e.  NN0  ( ( F `  a )  u.  ( F `  b )
)  C_  ( F `  c ) ) )
8366, 82mpbird 235 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z )  C_  w )
84 isipodrs 16394 . . . . 5  |-  ( (toInc `  ran  F )  e. Dirset  <->  ( ran  F  e.  _V  /\ 
ran  F  =/=  (/)  /\  A. y  e.  ran  F A. z  e.  ran  F E. w  e.  ran  F ( y  u.  z ) 
C_  w ) )
8517, 24, 83, 84syl3anbrc 1189 . . . 4  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  (toInc `  ran  F )  e. Dirset )
86 isnacs3 35470 . . . . . . 7  |-  ( C  e.  (NoeACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) ) )
8786simprbi 465 . . . . . 6  |-  ( C  e.  (NoeACS `  X
)  ->  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )
88873ad2ant1 1026 . . . . 5  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  A. y  e.  ~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )
89 fveq2 5877 . . . . . . . 8  |-  ( y  =  ran  F  -> 
(toInc `  y )  =  (toInc `  ran  F ) )
9089eleq1d 2491 . . . . . . 7  |-  ( y  =  ran  F  -> 
( (toInc `  y
)  e. Dirset  <->  (toInc `  ran  F )  e. Dirset ) )
91 unieq 4224 . . . . . . . 8  |-  ( y  =  ran  F  ->  U. y  =  U. ran  F )
92 id 23 . . . . . . . 8  |-  ( y  =  ran  F  -> 
y  =  ran  F
)
9391, 92eleq12d 2504 . . . . . . 7  |-  ( y  =  ran  F  -> 
( U. y  e.  y  <->  U. ran  F  e. 
ran  F ) )
9490, 93imbi12d 321 . . . . . 6  |-  ( y  =  ran  F  -> 
( ( (toInc `  y )  e. Dirset  ->  U. y  e.  y )  <-> 
( (toInc `  ran  F )  e. Dirset  ->  U. ran  F  e.  ran  F ) ) )
9594rspcva 3180 . . . . 5  |-  ( ( ran  F  e.  ~P C  /\  A. y  e. 
~P  C ( (toInc `  y )  e. Dirset  ->  U. y  e.  y ) )  ->  ( (toInc ` 
ran  F )  e. Dirset  ->  U. ran  F  e. 
ran  F ) )
9615, 88, 95syl2anc 665 . . . 4  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( (toInc ` 
ran  F )  e. Dirset  ->  U. ran  F  e. 
ran  F ) )
9785, 96mpd 15 . . 3  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  U. ran  F  e.  ran  F )
98 fvelrnb 5924 . . . 4  |-  ( F  Fn  NN0  ->  ( U. ran  F  e.  ran  F  <->  E. y  e.  NN0  ( F `  y )  =  U. ran  F ) )
9919, 98syl 17 . . 3  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  ( U. ran  F  e.  ran  F  <->  E. y  e.  NN0  ( F `  y )  =  U. ran  F ) )
10097, 99mpbid 213 . 2  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  ( F `  y )  =  U. ran  F )
10110, 100reximddv 2901 1  |-  ( ( C  e.  (NoeACS `  X )  /\  F : NN0 --> C  /\  A. x  e.  NN0  ( F `
 x )  C_  ( F `  ( x  +  1 ) ) )  ->  E. y  e.  NN0  A. z  e.  ( ZZ>= `  y )
( F `  z
)  =  ( F `
 y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   E.wrex 2776   _Vcvv 3081    u. cun 3434    C_ wss 3436   (/)c0 3761   ~Pcpw 3979   U.cuni 4216   class class class wbr 4420   ran crn 4850    Fn wfn 5592   -->wf 5593   ` cfv 5597  (class class class)co 6301   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    <_ cle 9676   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159  Moorecmre 15475  Dirsetcdrs 16159  toInccipo 16384  NoeACScnacs 35462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-fz 11785  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-tset 15196  df-ple 15197  df-ocomp 15198  df-mre 15479  df-mrc 15480  df-acs 15482  df-preset 16160  df-drs 16161  df-poset 16178  df-ipo 16385  df-nacs 35463
This theorem is referenced by:  hbt  35908
  Copyright terms: Public domain W3C validator