Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nabbiOLD Structured version   Unicode version

Theorem nabbiOLD 2760
 Description: Obsolete proof of nabbi 2759 as of 25-Nov-2019. (Contributed by AV, 7-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nabbiOLD

Proof of Theorem nabbiOLD
StepHypRef Expression
1 df-ne 2621 . . 3
2 abbi 2554 . . . . . 6
32bicomi 206 . . . . 5
43notbii 298 . . . 4
5 exnal 1696 . . . . . 6
65bicomi 206 . . . . 5
7 xor3 359 . . . . . 6
87exbii 1713 . . . . 5
96, 8bitri 253 . . . 4
104, 9bitri 253 . . 3
111, 10bitri 253 . 2
1211bicomi 206 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 188  wal 1436   wceq 1438  wex 1660  cab 2408   wne 2619 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418  df-ne 2621 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator