Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0moeu Structured version   Visualization version   Unicode version

Theorem n0moeu 3736
 Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
Assertion
Ref Expression
n0moeu
Distinct variable group:   ,

Proof of Theorem n0moeu
StepHypRef Expression
1 n0 3732 . . . 4
21biimpi 199 . . 3
32biantrurd 516 . 2
4 eu5 2345 . 2
53, 4syl6bbr 271 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 189   wa 376  wex 1671   wcel 1904  weu 2319  wmo 2320   wne 2641  c0 3722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-v 3033  df-dif 3393  df-nul 3723 This theorem is referenced by:  minveclem4a  22450  minveclem4aOLD  22462  frg2wot1  25864
 Copyright terms: Public domain W3C validator