Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0f Structured version   Unicode version

Theorem n0f 3776
 Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3777 requires only that not be free in, rather than not occur in, . (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
n0f.1
Assertion
Ref Expression
n0f

Proof of Theorem n0f
StepHypRef Expression
1 n0f.1 . . . . 5
2 nfcv 2591 . . . . 5
31, 2cleqf 2618 . . . 4
4 noel 3771 . . . . . 6
54nbn 348 . . . . 5
65albii 1687 . . . 4
73, 6bitr4i 255 . . 3
87necon3abii 2691 . 2
9 df-ex 1660 . 2
108, 9bitr4i 255 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wb 187  wal 1435   wceq 1437  wex 1659   wcel 1870  wnfc 2577   wne 2625  c0 3767 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-v 3089  df-dif 3445  df-nul 3768 This theorem is referenced by:  n0  3777  abn0  3787  cp  8361  ordtconlem1  28569
 Copyright terms: Public domain W3C validator