MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0f Unicode version

Theorem n0f 3370
Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3371 requires only that  x not be free in, rather than not occur in,  A. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
n0f.1  |-  F/_ x A
Assertion
Ref Expression
n0f  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )

Proof of Theorem n0f
StepHypRef Expression
1 n0f.1 . . . . 5  |-  F/_ x A
2 nfcv 2385 . . . . 5  |-  F/_ x (/)
31, 2cleqf 2409 . . . 4  |-  ( A  =  (/)  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
4 noel 3366 . . . . . 6  |-  -.  x  e.  (/)
54nbn 338 . . . . 5  |-  ( -.  x  e.  A  <->  ( x  e.  A  <->  x  e.  (/) ) )
65albii 1554 . . . 4  |-  ( A. x  -.  x  e.  A  <->  A. x ( x  e.  A  <->  x  e.  (/) ) )
73, 6bitr4i 245 . . 3  |-  ( A  =  (/)  <->  A. x  -.  x  e.  A )
87necon3abii 2442 . 2  |-  ( A  =/=  (/)  <->  -.  A. x  -.  x  e.  A
)
9 df-ex 1538 . 2  |-  ( E. x  x  e.  A  <->  -. 
A. x  -.  x  e.  A )
108, 9bitr4i 245 1  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   F/_wnfc 2372    =/= wne 2412   (/)c0 3362
This theorem is referenced by:  n0  3371  abn0  3380  cp  7445
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-v 2729  df-dif 3081  df-nul 3363
  Copyright terms: Public domain W3C validator